Model-Agnostic Interpretation via Feature Perturbation Visualization
dc.contributor.author | Marcaiio, Wilson E. [UNESP] | |
dc.contributor.author | Eler, Danilo Medeiros [UNESP] | |
dc.contributor.author | Breve, Fabricio [UNESP] | |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
dc.date.accessioned | 2025-04-29T20:05:29Z | |
dc.date.issued | 2023-01-01 | |
dc.description.abstract | As machine learning algorithms increasingly replace traditional approaches, ensuring their reliability becomes crucial in applications where incorrect decisions can lead to serious consequences. This work proposes a novel model-agnostic in-terpretation approach using feature perturbations, along with a validated visualization tool. The approach enables better understanding of model decisions by domain experts, facilitating effective decision-making in real-world applications. | en |
dc.description.affiliation | São Paulo State University (UNESP), SP | |
dc.description.affiliationUnesp | São Paulo State University (UNESP), SP | |
dc.format.extent | 19-24 | |
dc.identifier | http://dx.doi.org/10.1109/SIBGRAPI59091.2023.10347141 | |
dc.identifier.citation | Brazilian Symposium of Computer Graphic and Image Processing, p. 19-24. | |
dc.identifier.doi | 10.1109/SIBGRAPI59091.2023.10347141 | |
dc.identifier.issn | 1530-1834 | |
dc.identifier.scopus | 2-s2.0-85204404956 | |
dc.identifier.uri | https://hdl.handle.net/11449/306143 | |
dc.language.iso | eng | |
dc.relation.ispartof | Brazilian Symposium of Computer Graphic and Image Processing | |
dc.source | Scopus | |
dc.title | Model-Agnostic Interpretation via Feature Perturbation Visualization | en |
dc.type | Trabalho apresentado em evento | pt |
dspace.entity.type | Publication |