Logo do repositório
 

Model-Agnostic Interpretation via Feature Perturbation Visualization

dc.contributor.authorMarcaiio, Wilson E. [UNESP]
dc.contributor.authorEler, Danilo Medeiros [UNESP]
dc.contributor.authorBreve, Fabricio [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2025-04-29T20:05:29Z
dc.date.issued2023-01-01
dc.description.abstractAs machine learning algorithms increasingly replace traditional approaches, ensuring their reliability becomes crucial in applications where incorrect decisions can lead to serious consequences. This work proposes a novel model-agnostic in-terpretation approach using feature perturbations, along with a validated visualization tool. The approach enables better understanding of model decisions by domain experts, facilitating effective decision-making in real-world applications.en
dc.description.affiliationSão Paulo State University (UNESP), SP
dc.description.affiliationUnespSão Paulo State University (UNESP), SP
dc.format.extent19-24
dc.identifierhttp://dx.doi.org/10.1109/SIBGRAPI59091.2023.10347141
dc.identifier.citationBrazilian Symposium of Computer Graphic and Image Processing, p. 19-24.
dc.identifier.doi10.1109/SIBGRAPI59091.2023.10347141
dc.identifier.issn1530-1834
dc.identifier.scopus2-s2.0-85204404956
dc.identifier.urihttps://hdl.handle.net/11449/306143
dc.language.isoeng
dc.relation.ispartofBrazilian Symposium of Computer Graphic and Image Processing
dc.sourceScopus
dc.titleModel-Agnostic Interpretation via Feature Perturbation Visualizationen
dc.typeTrabalho apresentado em eventopt
dspace.entity.typePublication

Arquivos

Coleções