Logotipo do repositório
 

Publicação:
A kernel-based optimum-path forest classifier

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

The modeling of real-world problems as graphs along with the problem of non-linear distributions comes up with the idea of applying kernel functions in feature spaces. Roughly speaking, the idea is to seek for well-behaved samples in higher dimensional spaces, where the assumption of linearly separable samples is stronger. In this matter, this paper proposes a kernel-based Optimum-Path Forest (OPF) classifier by incorporating kernel functions in both training and classification steps. The proposed technique was evaluated over a benchmark comprised of 11 datasets, whose results outperformed the well-known Support Vector Machines and the standard OPF classifier for some situations.

Descrição

Palavras-chave

Kernel, Optimum-path forest, Support vector machines

Idioma

Inglês

Como citar

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 10657 LNCS, p. 652-660.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação