Publicação: A kernel-based optimum-path forest classifier
dc.contributor.author | Afonso, Luis C. S. | |
dc.contributor.author | Pereira, Danillo R. | |
dc.contributor.author | Papa, João P. [UNESP] | |
dc.contributor.institution | Universidade Federal de São Carlos (UFSCar) | |
dc.contributor.institution | University of Western São Paulo | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2018-12-11T17:35:59Z | |
dc.date.available | 2018-12-11T17:35:59Z | |
dc.date.issued | 2018-01-01 | |
dc.description.abstract | The modeling of real-world problems as graphs along with the problem of non-linear distributions comes up with the idea of applying kernel functions in feature spaces. Roughly speaking, the idea is to seek for well-behaved samples in higher dimensional spaces, where the assumption of linearly separable samples is stronger. In this matter, this paper proposes a kernel-based Optimum-Path Forest (OPF) classifier by incorporating kernel functions in both training and classification steps. The proposed technique was evaluated over a benchmark comprised of 11 datasets, whose results outperformed the well-known Support Vector Machines and the standard OPF classifier for some situations. | en |
dc.description.affiliation | Department of Computing UFSCar - Federal University of São Carlos | |
dc.description.affiliation | University of Western São Paulo | |
dc.description.affiliation | School of Sciences UNESP - São Paulo State University | |
dc.description.affiliationUnesp | School of Sciences UNESP - São Paulo State University | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorshipId | FAPESP: #2014/12236-1 | |
dc.description.sponsorshipId | FAPESP: #2014/16250-9 | |
dc.description.sponsorshipId | FAPESP: #2016/19403-6 | |
dc.description.sponsorshipId | CAPES: #306166/2014-3 | |
dc.description.sponsorshipId | CNPq: #306166/2014-3 | |
dc.format.extent | 652-660 | |
dc.identifier | http://dx.doi.org/10.1007/978-3-319-75193-1_78 | |
dc.identifier.citation | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 10657 LNCS, p. 652-660. | |
dc.identifier.doi | 10.1007/978-3-319-75193-1_78 | |
dc.identifier.issn | 1611-3349 | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.scopus | 2-s2.0-85042220385 | |
dc.identifier.uri | http://hdl.handle.net/11449/179600 | |
dc.language.iso | eng | |
dc.relation.ispartof | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | |
dc.relation.ispartofsjr | 0,295 | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Scopus | |
dc.subject | Kernel | |
dc.subject | Optimum-path forest | |
dc.subject | Support vector machines | |
dc.title | A kernel-based optimum-path forest classifier | en |
dc.type | Trabalho apresentado em evento | |
dspace.entity.type | Publication | |
unesp.author.orcid | 0000-0002-5543-3896[1] | |
unesp.author.orcid | 0000-0001-7934-6482[2] | |
unesp.author.orcid | 0000-0002-6494-7514[3] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências, Bauru | pt |
unesp.department | Computação - FC | pt |