Publicação: A mathematical model of chemotherapy response to tumour growth
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso aberto

Resumo
A simple mathematical model, developed to simulate the chemotherapy response to tumour growth with stabilized vascularization, is presented as a system of three differential equations associated with the normal cells, cancer cells and chemotherapy agent. Cancer cells and normal cells compete by available resources. The response to chemotherapy killing action on both normal and cancer cells obey Michaelis-Menten saturation function on the chemotherapy agent. Our aim is to investigate the efficiency of the chemotherapy in order to eliminate the cancer cells. For that, we analyse the local stability of the equilibria and the global stability of the cure equilibrium for which there is no cancer cells. We show that there is a region of parameter space that the chemotherapy may eliminate the tumour for any initial conditions. Based on numerical simulations, we present the bifurcation diagram in terms of the infusion rate and the killing action on cancer cells, that exhibit, for which infusion conditions, the system evolves to the cure state. Copyright © Applied Mathematics Institute, University of Alberta.
Descrição
Palavras-chave
Chemotherapy, Mathematical model, Tumour growth
Idioma
Inglês
Como citar
The Canadian Applied Mathematics Quarterly, v. 19, n. 4, p. 369-384, 2011.