AUTOMATIC TREE DETECTION/LOCALIZATION IN URBAN FOREST USING TERRESTRIAL LIDAR DATA
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Trabalho apresentado em evento
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
Individual tree detection is essential task to access relevant parameters at the tree scale, such as: diameter at breast height (DBH), first branch height, and tree height. In this context, we propose an automatic tree detection/localization approach based on trunk geometry, i.e., on vertical continuity, not requiring preprocessing stages (ground filtering, point cloud normalization, classification) or training samples, as in some classes of methods. The performance of the proposed approach was evaluated using LiDAR data acquired by a terrestrial laser scanning (TLS) system in an urban forest. Obtained results indicated the potential of the proposed approach, resulting in an Fscore of 98% and a RMSEXY of 15 cm.
Descrição
Palavras-chave
Forest Inventory, Mapping, Photogrammetry, Point Cloud, Terrestrial Laser Scanning
Idioma
Inglês
Citação
International Geoscience and Remote Sensing Symposium (IGARSS), p. 4522-4525.





