Logo do repositório

AUTOMATIC TREE DETECTION/LOCALIZATION IN URBAN FOREST USING TERRESTRIAL LIDAR DATA

dc.contributor.authordos Santos, Renato César
dc.contributor.authorda Silva, Matheus Ferreira [UNESP]
dc.contributor.authorTommaselli, Antônio Maria G.
dc.contributor.authorGalo, Mauricio
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2025-04-29T20:14:04Z
dc.date.issued2024-01-01
dc.description.abstractIndividual tree detection is essential task to access relevant parameters at the tree scale, such as: diameter at breast height (DBH), first branch height, and tree height. In this context, we propose an automatic tree detection/localization approach based on trunk geometry, i.e., on vertical continuity, not requiring preprocessing stages (ground filtering, point cloud normalization, classification) or training samples, as in some classes of methods. The performance of the proposed approach was evaluated using LiDAR data acquired by a terrestrial laser scanning (TLS) system in an urban forest. Obtained results indicated the potential of the proposed approach, resulting in an Fscore of 98% and a RMSEXY of 15 cm.en
dc.description.affiliationDepartment of Cartography
dc.description.affiliationGraduate Program in Cartographic Sciences São Paulo State University, SP
dc.description.affiliationUnespGraduate Program in Cartographic Sciences São Paulo State University, SP
dc.format.extent4522-4525
dc.identifierhttp://dx.doi.org/10.1109/IGARSS53475.2024.10642701
dc.identifier.citationInternational Geoscience and Remote Sensing Symposium (IGARSS), p. 4522-4525.
dc.identifier.doi10.1109/IGARSS53475.2024.10642701
dc.identifier.scopus2-s2.0-85208801630
dc.identifier.urihttps://hdl.handle.net/11449/308955
dc.language.isoeng
dc.relation.ispartofInternational Geoscience and Remote Sensing Symposium (IGARSS)
dc.sourceScopus
dc.subjectForest Inventory
dc.subjectMapping
dc.subjectPhotogrammetry
dc.subjectPoint Cloud
dc.subjectTerrestrial Laser Scanning
dc.titleAUTOMATIC TREE DETECTION/LOCALIZATION IN URBAN FOREST USING TERRESTRIAL LIDAR DATAen
dc.typeTrabalho apresentado em eventopt
dspace.entity.typePublication

Arquivos

Coleções