Publicação: Human action recognition using 2D poses
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Trabalho apresentado em evento
Direito de acesso
Resumo
The advances in video capture, storage and sharing technologies have caused a high demand in techniques for automatic recognition of humans actions. Among the main applications, we can highlight surveillance in public places, detection of falls in the elderly, no-checkout-required stores (Amazon Go), self-driving car, inappropriate content posted on the Internet, etc. The automatic recognition of human actions in videos is a challenging task because in order to obtain a good result one has to work with spatial information (e.g., shapes found in a single frame) and temporal information (e.g., movements found across frames). In this work, we present a simple methodology for describing human actions in videos that use extracted data from 2-Dimensional poses. The experimental results show that the proposed technique can encode spatial and temporal information, obtaining competitive accuracy rates compared to state-of-the-art methods.
Descrição
Palavras-chave
Human action recognition, Spatio-temporal features, Surveillance systems, Video sequences
Idioma
Inglês
Como citar
Proceedings - 2019 Brazilian Conference on Intelligent Systems, BRACIS 2019, p. 747-752.