Logotipo do repositório
 

Publicação:
Human action recognition using 2D poses

dc.contributor.authorVarges Da Silva, Murilo
dc.contributor.authorNilceu Marana, Aparecido [UNESP]
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionScience and Technology of São Paulo
dc.date.accessioned2020-12-12T01:09:37Z
dc.date.available2020-12-12T01:09:37Z
dc.date.issued2019-10-01
dc.description.abstractThe advances in video capture, storage and sharing technologies have caused a high demand in techniques for automatic recognition of humans actions. Among the main applications, we can highlight surveillance in public places, detection of falls in the elderly, no-checkout-required stores (Amazon Go), self-driving car, inappropriate content posted on the Internet, etc. The automatic recognition of human actions in videos is a challenging task because in order to obtain a good result one has to work with spatial information (e.g., shapes found in a single frame) and temporal information (e.g., movements found across frames). In this work, we present a simple methodology for describing human actions in videos that use extracted data from 2-Dimensional poses. The experimental results show that the proposed technique can encode spatial and temporal information, obtaining competitive accuracy rates compared to state-of-the-art methods.en
dc.description.affiliationFederal University of São Carlos - UFSCar
dc.description.affiliationFaculty of Sciences - UNESP
dc.description.affiliationFederal Institute of Education Science and Technology of São Paulo
dc.description.affiliationUnespFaculty of Sciences - UNESP
dc.format.extent747-752
dc.identifierhttp://dx.doi.org/10.1109/BRACIS.2019.00134
dc.identifier.citationProceedings - 2019 Brazilian Conference on Intelligent Systems, BRACIS 2019, p. 747-752.
dc.identifier.doi10.1109/BRACIS.2019.00134
dc.identifier.scopus2-s2.0-85077048571
dc.identifier.urihttp://hdl.handle.net/11449/198320
dc.language.isoeng
dc.relation.ispartofProceedings - 2019 Brazilian Conference on Intelligent Systems, BRACIS 2019
dc.sourceScopus
dc.subjectHuman action recognition
dc.subjectSpatio-temporal features
dc.subjectSurveillance systems
dc.subjectVideo sequences
dc.titleHuman action recognition using 2D posesen
dc.typeTrabalho apresentado em evento
dspace.entity.typePublication

Arquivos

Coleções