Publicação: Improving land cover classification through contextual-based optimum-path forest
Carregando...
Arquivos
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Elsevier B.V.
Tipo
Artigo
Direito de acesso
Acesso aberto

Resumo
Traditional machine learning algorithms very often assume statistically independent data samples. However, this is clearly not the case in remote sensing image applications, in which pixels present spatial and/or temporal dependencies. In this work, it has been presented an approach to improve land cover image classification using a contextual approach based on optimum-path forest (OPF) and the well-known Markov random fields (MRFs), hereinafter called OPF-MRF. In addition, it is also introduced a framework to the optimization of the amount of contextual information used by OPF-MRF. Experiments over high- and medium-resolution satellite (CBERS-2B, Landsat 5 TM, lkonos-2 MS and Geoeye) and radar (ALOS-PALSAR) images covering the area of two Brazilian cities have shown the proposed approach can overcome several shortcomings related to standard OPF classification. In some cases, the proposed approach outperformed traditional OFF in about 9% of recognition rate, which is crucial for land cover classification. (C) 2015 Elsevier Inc. All rights reserved.
Descrição
Palavras-chave
Land cover classification, Optimum-path forest, Contextual classification
Idioma
Inglês
Como citar
Information Sciences. New York: Elsevier Science Inc, v. 324, p. 60-87, 2015.