Repository logo
 

Publication:
Improving land cover classification through contextual-based optimum-path forest

dc.contributor.authorOsaku, D.
dc.contributor.authorNakamura, R. Y. M.
dc.contributor.authorPereira, L. A. M.
dc.contributor.authorPisani, R. J.
dc.contributor.authorLevada, A. L. M.
dc.contributor.authorCappabianco, F. A. M.
dc.contributor.authorFalco, A. X.
dc.contributor.authorPapa, Joao P. [UNESP]
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionBig Data Brasil
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Federal de São Paulo (UNIFESP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-11-26T16:17:06Z
dc.date.available2018-11-26T16:17:06Z
dc.date.issued2015-12-10
dc.description.abstractTraditional machine learning algorithms very often assume statistically independent data samples. However, this is clearly not the case in remote sensing image applications, in which pixels present spatial and/or temporal dependencies. In this work, it has been presented an approach to improve land cover image classification using a contextual approach based on optimum-path forest (OPF) and the well-known Markov random fields (MRFs), hereinafter called OPF-MRF. In addition, it is also introduced a framework to the optimization of the amount of contextual information used by OPF-MRF. Experiments over high- and medium-resolution satellite (CBERS-2B, Landsat 5 TM, lkonos-2 MS and Geoeye) and radar (ALOS-PALSAR) images covering the area of two Brazilian cities have shown the proposed approach can overcome several shortcomings related to standard OPF classification. In some cases, the proposed approach outperformed traditional OFF in about 9% of recognition rate, which is crucial for land cover classification. (C) 2015 Elsevier Inc. All rights reserved.en
dc.description.affiliationUFSCar Univ Fed Sao Carlos, Dept Comp, Sao Carlos, SP, Brazil
dc.description.affiliationBig Data Brasil, Sao Paulo, Brazil
dc.description.affiliationUniv Estadual Campinas, Inst Comp, Campinas, SP, Brazil
dc.description.affiliationWestern Univ Sao Paulo, Presidente Prudente, SP, Brazil
dc.description.affiliationUniv Fed Sao Paulo, Sao Jose Dos Campos, Brazil
dc.description.affiliationSao Paulo State Univ, Dept Comp, Bauru, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp, Bauru, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2009/16206-1
dc.description.sponsorshipIdFAPESP: 2012/06472-9
dc.description.sponsorshipIdFAPESP: 2013/20387-7
dc.description.sponsorshipIdFAPESP: 2014/16250-9
dc.description.sponsorshipIdCNPq: 303182/2011-3
dc.description.sponsorshipIdCNPq: 470571/2013-6
dc.description.sponsorshipIdCNPq: 306166/2014-3
dc.format.extent60-87
dc.identifierhttp://dx.doi.org/10.1016/j.ins.2015.06.020
dc.identifier.citationInformation Sciences. New York: Elsevier Science Inc, v. 324, p. 60-87, 2015.
dc.identifier.doi10.1016/j.ins.2015.06.020
dc.identifier.fileWOS000362307200005.pdf
dc.identifier.issn0020-0255
dc.identifier.urihttp://hdl.handle.net/11449/160879
dc.identifier.wosWOS:000362307200005
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofInformation Sciences
dc.relation.ispartofsjr1,635
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectLand cover classification
dc.subjectOptimum-path forest
dc.subjectContextual classification
dc.titleImproving land cover classification through contextual-based optimum-path foresten
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
WOS000362307200005.pdf
Size:
9.32 MB
Format:
Adobe Portable Document Format
Description: