Publicação: Limit cycles via higher order perturbations for some piecewise differential systems
Carregando...
Arquivos
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Elsevier B.V.
Tipo
Artigo
Direito de acesso
Acesso aberto

Resumo
A classical perturbation problem is the polynomial perturbation of the harmonic oscillator, (x', y') = (-y + epsilon f(x, y, epsilon), x + epsilon g(x, y, epsilon)). In this paper we study the limit cycles that bifurcate from the period annulus via piecewise polynomial perturbations in two zones separated by a straight line. We prove that, for polynomial perturbations of degree n, no more than Nn-1 limit cycles appear up to a study of order N. We also show that this upper bound is reached for orders one and two. Moreover, we study this problem in some classes of piecewise Lienard differential systems providing better upper bounds for higher order perturbation in 8, showing also when they are reached. The Poincare-Pontryagin-Melnikov theory is the main technique used to prove all the results. (C) 2018 Elsevier B.V. All rights reserved.
Descrição
Palavras-chave
Non-smooth differential system, Limit cycle in Melnikov higher order perturbation, Lienard piecewise differential system
Idioma
Inglês
Como citar
Physica D-nonlinear Phenomena. Amsterdam: Elsevier Science Bv, v. 371, p. 28-47, 2018.