Publicação: Limit cycles via higher order perturbations for some piecewise differential systems
dc.contributor.author | Buzzi, Claudio A. [UNESP] | |
dc.contributor.author | Silva Lima, Mauricio Firmino | |
dc.contributor.author | Torregrosa, Joan | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Universidade Federal do ABC (UFABC) | |
dc.contributor.institution | Univ Autonoma Barcelona | |
dc.date.accessioned | 2018-11-26T17:49:14Z | |
dc.date.available | 2018-11-26T17:49:14Z | |
dc.date.issued | 2018-05-15 | |
dc.description.abstract | A classical perturbation problem is the polynomial perturbation of the harmonic oscillator, (x', y') = (-y + epsilon f(x, y, epsilon), x + epsilon g(x, y, epsilon)). In this paper we study the limit cycles that bifurcate from the period annulus via piecewise polynomial perturbations in two zones separated by a straight line. We prove that, for polynomial perturbations of degree n, no more than Nn-1 limit cycles appear up to a study of order N. We also show that this upper bound is reached for orders one and two. Moreover, we study this problem in some classes of piecewise Lienard differential systems providing better upper bounds for higher order perturbation in 8, showing also when they are reached. The Poincare-Pontryagin-Melnikov theory is the main technique used to prove all the results. (C) 2018 Elsevier B.V. All rights reserved. | en |
dc.description.affiliation | Univ Estadual Paulista, Dept Matemat, Sao Jose Do Rio Preto, Brazil | |
dc.description.affiliation | Univ Fed ABC, Ctr Matemat Comp & Cognicao, BR-09210170 Santo Andre, SP, Brazil | |
dc.description.affiliation | Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain | |
dc.description.affiliationUnesp | Univ Estadual Paulista, Dept Matemat, Sao Jose Do Rio Preto, Brazil | |
dc.description.sponsorship | MINECO | |
dc.description.sponsorship | AGAUR grant | |
dc.description.sponsorship | European Community grants | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorshipId | MINECO: MTM2013-40998-P | |
dc.description.sponsorshipId | MINECO: MTM2016-77278-P | |
dc.description.sponsorshipId | AGAUR grant: 2014 SGR568 | |
dc.description.sponsorshipId | European Community grants: FP7-PEOPLE-2012-IRSES 316338 | |
dc.description.sponsorshipId | European Community grants: 318999 | |
dc.description.sponsorshipId | FAPESP: 2012/18780-0 | |
dc.description.sponsorshipId | FAPESP: 2013/24541-0 | |
dc.description.sponsorshipId | FAPESP: 2017/03352-6 | |
dc.format.extent | 28-47 | |
dc.identifier | http://dx.doi.org/10.1016/j.physd.2018.01.007 | |
dc.identifier.citation | Physica D-nonlinear Phenomena. Amsterdam: Elsevier Science Bv, v. 371, p. 28-47, 2018. | |
dc.identifier.doi | 10.1016/j.physd.2018.01.007 | |
dc.identifier.file | WOS000430766000003.pdf | |
dc.identifier.issn | 0167-2789 | |
dc.identifier.lattes | 6682867760717445 | |
dc.identifier.orcid | 0000-0003-2037-8417 | |
dc.identifier.uri | http://hdl.handle.net/11449/164133 | |
dc.identifier.wos | WOS:000430766000003 | |
dc.language.iso | eng | |
dc.publisher | Elsevier B.V. | |
dc.relation.ispartof | Physica D-nonlinear Phenomena | |
dc.relation.ispartofsjr | 0,861 | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Web of Science | |
dc.subject | Non-smooth differential system | |
dc.subject | Limit cycle in Melnikov higher order perturbation | |
dc.subject | Lienard piecewise differential system | |
dc.title | Limit cycles via higher order perturbations for some piecewise differential systems | en |
dc.type | Artigo | |
dcterms.license | http://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy | |
dcterms.rightsHolder | Elsevier B.V. | |
dspace.entity.type | Publication | |
unesp.author.lattes | 6682867760717445[1] | |
unesp.author.orcid | 0000-0002-2753-1827[3] | |
unesp.author.orcid | 0000-0003-2037-8417[1] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Preto | pt |
unesp.department | Matemática - IBILCE | pt |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- WOS000430766000003.pdf
- Tamanho:
- 529.67 KB
- Formato:
- Adobe Portable Document Format
- Descrição: