Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Automated computer vision system to predict body weight and average daily gain in beef cattle during growing and finishing phases

dc.contributor.authorCominotte, A.
dc.contributor.authorFernandes, A. F. A.
dc.contributor.authorDorea, J. R. R.
dc.contributor.authorRosa, G. J. M.
dc.contributor.authorLadeira, M. M.
dc.contributor.authorvan Cleef, E. H. C. B.
dc.contributor.authorPereira, G. L. [UNESP]
dc.contributor.authorBaldassini, W. A. [UNESP]
dc.contributor.authorMachado Neto, O. R. [UNESP]
dc.contributor.institutionUniv Wisconsin
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal de Lavras (UFLA)
dc.contributor.institutionUniv Fed Triangulo Mineiro
dc.date.accessioned2020-12-10T17:27:52Z
dc.date.available2020-12-10T17:27:52Z
dc.date.issued2020-02-01
dc.description.abstractFrequent measurements of body weight (BW) in livestock systems are very important because they allow assessing growth. However, real-time monitoring of animal growth through traditional weighing scales is stressful for animals, costly and labor-intensive. Thus, the objectives of this study were to: 1) assess the predictive quality of an automated computer vision system used to predict BW and average daily gain (ADG) in beef cattle; and 2) compare different predictive approaches, including Multiple Linear Regression (MLR), Least Absolute Shrinkage and Selection Operator (LASSO), Partial Least Squares (PLS), and Artificial Neutral Networks (ANN). A total of 234 images of Nellore beef cattle were collected during the weaning, stocker and feedlot phases. First, biometric body measurements of each animal, such as body volume, area, length, and others, were performed using three-dimensional images captured with the Kinecto (R) sensor, and their respective BW were acquired using an electronic scale. Next, the biometric measurements were used as explanatory variables in the four predictive approaches (MLR, LASSO, PLS, and ANN). To evaluate prediction quality, a leave-one-out cross-validation was adopted. The ANN was the best prediction approach in terms of Root Mean Square Error of Prediction (RMSEP) and squared predictive correlation (r(2)). The results for Weaning were RMSEP = 8.6 kg and r(2) = 0.91; for Stocker phase, RMSEP = 11.4 kg and r(2) = 0.79; and for Beginning of feedlot, RMSEP = 7.7 kg and r(2) = 0.92. The ANN was also the best method for prediction of ADG, with RMSEP = 0.02 kg/d and r(2) = 0.67 for the period between Weaning and Stocker, RMSEP = 0.02 kg/d and r(2) = 0.85 for the Weaning and Beginning of Feedlot phase, RMSEP = 0.03 kg/d and r(2) = 0.80 for Weaning and Final of Feedlot phase, RMSEP = 0.10 kg/d and r(2) = 0.51 for Stocker and Beginning of feedlot phase, and RMSEP = 0.09 kg/d and r(2) = 0.82 for the Beginning and Final of feedlot phase. Overall, the results indicate that the proposed automated computer vision system can be successfully used to predict BW and ADG in real-time in beef cattle.en
dc.description.affiliationUniv Wisconsin, Dept Anim Sci, Madison, WI 53706 USA
dc.description.affiliationUniv Wisconsin, Dept Biostat & Med Informat, Madison, WI 53706 USA
dc.description.affiliationSao Paulo State Univ, Sch Vet Med & Anim Sci, BR-18618681 Botucatu, SP, Brazil
dc.description.affiliationSao Paulo State Univ, Sch Agr & Veterinarian Sci, BR-14884900 Jaboticabal, Brazil
dc.description.affiliationUniv Fed Lavras, Anim Sci Dept, BR-3720000 Lavras, MG, Brazil
dc.description.affiliationUniv Fed Triangulo Mineiro, BR-38280000 Iturama, MG, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Sch Vet Med & Anim Sci, BR-18618681 Botucatu, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Sch Agr & Veterinarian Sci, BR-14884900 Jaboticabal, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdFAPESP: 2017/20812-0
dc.description.sponsorshipIdFAPESP: 2017/02057-0
dc.description.sponsorshipIdCAPES: 001
dc.format.extent10
dc.identifierhttp://dx.doi.org/10.1016/j.livsci.2019.103904
dc.identifier.citationLivestock Science. Amsterdam: Elsevier, v. 232, 10 p., 2020.
dc.identifier.doi10.1016/j.livsci.2019.103904
dc.identifier.issn1871-1413
dc.identifier.urihttp://hdl.handle.net/11449/195235
dc.identifier.wosWOS:000518489400005
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofLivestock Science
dc.sourceWeb of Science
dc.subjectBeef cattle
dc.subjectComputer vision
dc.subjectImage analysis
dc.subjectKinect (R)
dc.titleAutomated computer vision system to predict body weight and average daily gain in beef cattle during growing and finishing phasesen
dc.typeArtigopt
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
relation.isOrgUnitOfPublication3d807254-e442-45e5-a80b-0f6bf3a26e48
relation.isOrgUnitOfPublication9ca5a87b-0c83-43fa-b290-6f8a4202bf99
relation.isOrgUnitOfPublication.latestForDiscovery3d807254-e442-45e5-a80b-0f6bf3a26e48
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Medicina Veterinária e Zootecnia, Botucatupt
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabalpt

Arquivos