Logo do repositório

Texture analysis: A potential tool to differentiate primary brain tumors and solitary brain metastasis

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

We propose a machine learning (ML) approach applied to texture features to differentiate primary brain tumors and solitary brain metastasis. Magnetic resonance imaging (MRI) exams of 96 patients were divided into primary tumors (38) and solitary brain metastasis (58). MRI sequences used: diffusion-weighted image (DWI), fluid-attenuated inversion recovery, T1-weighted, T1-weighted SE gadolinium-enhanced, and T2-weighted images. Regions of interest (ROIs) of 10 × 10 pixels were positioned within the tumors. For each ROI, 40 texture features were extracted and applied to five different ML methods: naive bayes, support vector machine (SVM), stochastic gradient descent, random forest, and tree. The ML methods classified the groups with good differentiation of up to 97.5% of the area under the receiver operator characteristics (ROC) for SVM as the best classifier, especially in the DWI sequence. The method has a reliable classification for the investigation of tumor lesions.

Descrição

Palavras-chave

Primary brain tumors, Solitary brain metastasis, Texture analysis

Idioma

Inglês

Citação

Multimedia Tools and Applications, v. 83, n. 13, p. 39523-39535, 2024.

Itens relacionados

Financiadores

Unidades

Item type:Unidade,
Faculdade de Medicina
FMB
Campus: Botucatu


Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso