Logo do repositório

Texture analysis: A potential tool to differentiate primary brain tumors and solitary brain metastasis

dc.contributor.authorSouza, S. A.S. [UNESP]
dc.contributor.authorGuassu, R. A.C. [UNESP]
dc.contributor.authorAlves, A. F.F. [UNESP]
dc.contributor.authorAlvarez, M. [UNESP]
dc.contributor.authorPitanga, L. C.C.
dc.contributor.authorReis, F.
dc.contributor.authorVacavant, A.
dc.contributor.authorMiranda, J. R.A. [UNESP]
dc.contributor.authorFilho, J. C. S. Trindade [UNESP]
dc.contributor.authorPina, D. R. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionInstitut Universitaire de Technologie
dc.date.accessioned2025-04-29T19:28:34Z
dc.date.issued2024-04-01
dc.description.abstractWe propose a machine learning (ML) approach applied to texture features to differentiate primary brain tumors and solitary brain metastasis. Magnetic resonance imaging (MRI) exams of 96 patients were divided into primary tumors (38) and solitary brain metastasis (58). MRI sequences used: diffusion-weighted image (DWI), fluid-attenuated inversion recovery, T1-weighted, T1-weighted SE gadolinium-enhanced, and T2-weighted images. Regions of interest (ROIs) of 10 × 10 pixels were positioned within the tumors. For each ROI, 40 texture features were extracted and applied to five different ML methods: naive bayes, support vector machine (SVM), stochastic gradient descent, random forest, and tree. The ML methods classified the groups with good differentiation of up to 97.5% of the area under the receiver operator characteristics (ROC) for SVM as the best classifier, especially in the DWI sequence. The method has a reliable classification for the investigation of tumor lesions.en
dc.description.affiliationDepartment of Biophysics and Pharmacology São Paulo State University Julio de Mesquita Filho
dc.description.affiliationBotucatu Medical School Clinics Hospital Medical Physics and Radioprotection Nucleus São Paulo State University Julio de Mesquita Filho
dc.description.affiliationDepartment of Radiology School of Medical Sciences University of Campinas
dc.description.affiliationInstitut Universitaire de Technologie
dc.description.affiliationBotucatu Medical School São Paulo State University
dc.description.affiliationDepartment of Tropical Diseases and Imaging Diagnosis São Paulo State University Julio de Mesquita Filho
dc.description.affiliationUnespDepartment of Biophysics and Pharmacology São Paulo State University Julio de Mesquita Filho
dc.description.affiliationUnespBotucatu Medical School Clinics Hospital Medical Physics and Radioprotection Nucleus São Paulo State University Julio de Mesquita Filho
dc.description.affiliationUnespBotucatu Medical School São Paulo State University
dc.description.affiliationUnespDepartment of Tropical Diseases and Imaging Diagnosis São Paulo State University Julio de Mesquita Filho
dc.format.extent39523-39535
dc.identifierhttp://dx.doi.org/10.1007/s11042-023-17139-2
dc.identifier.citationMultimedia Tools and Applications, v. 83, n. 13, p. 39523-39535, 2024.
dc.identifier.doi10.1007/s11042-023-17139-2
dc.identifier.issn1573-7721
dc.identifier.issn1380-7501
dc.identifier.scopus2-s2.0-85173124338
dc.identifier.urihttps://hdl.handle.net/11449/303079
dc.language.isoeng
dc.relation.ispartofMultimedia Tools and Applications
dc.sourceScopus
dc.subjectPrimary brain tumors
dc.subjectSolitary brain metastasis
dc.subjectTexture analysis
dc.titleTexture analysis: A potential tool to differentiate primary brain tumors and solitary brain metastasisen
dc.typeArtigopt
dspace.entity.typePublication
relation.isOrgUnitOfPublicationa3cdb24b-db92-40d9-b3af-2eacecf9f2ba
relation.isOrgUnitOfPublication.latestForDiscoverya3cdb24b-db92-40d9-b3af-2eacecf9f2ba
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Medicina, Botucatupt

Arquivos