Publicação: Continuous Synthesis of Biodiesel from Outstanding Kernel Oil in a Packed Bed Reactor Using Burkholderia cepacia Lipase Immobilized on Magnetic Nanosupport
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Resumo
This study deals with the use of commercial lipase stabilized onto magnetic particles of iron oxides (Fe3O4/γ-Fe2O3) and applied as a heterogeneous biocatalyst in the synthesis of ethyl esters (biodiesel) in a solvent-free medium on a continuous process. Magnetic particles were synthesized by alkaline co-precipitation, silanized, activated and subsequently used for immobilization of Burkholderia cepacia lipase. The results regarding the lipase immobilization showed an enzyme activity retention of about 53% and an increase in the KM value in about threefold (from 410 to 1262 mmol L−1) and a decrease in the Vmax value in sevenfold (From 12,390 to 1786 U g−1) when compared with the free enzyme. The immobilization process favored the thermal stability and increased the half-time of the enzyme about tenfold at 50 °C. The immobilized derivative was evaluated to aroma production and the activity of esterification was calculated as being 56.7 μmol L−1 g−1 min−1, which corresponds to a productivity value of 0.58 g ester L−1 h−1. The immobilized system was also used to mediate transesterification of kernel oil in a fixed bed reactor operating in a continuous flow with a reaction medium composed of oil and ethanol at a molar ratio of 1:12, 50 °C and space–time of 16 h. The operational stability of the immobilized lipase estimated at 47 days allowed to operate the reactor with high productivity of 38.7 ± 0.7 mg g−1 h−1. Also, the product properties of the ester content (> 96.5%) and kinematic viscosity value (5.32 ± 0.4 mm2 s−1 at 40 °C) meet the requirements of the ANP and ASTM (D6751) for biodiesel fuel. Graphic Abstract: [Figure not available: see fulltext.]
Descrição
Palavras-chave
Biodiesel, Continuous reaction, Enzyme immobilization, Lipase, Magnetic nanoparticles
Idioma
Inglês
Como citar
Catalysis Letters.