Logotipo do repositório
 

Publicação:
Continuous Synthesis of Biodiesel from Outstanding Kernel Oil in a Packed Bed Reactor Using Burkholderia cepacia Lipase Immobilized on Magnetic Nanosupport

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

This study deals with the use of commercial lipase stabilized onto magnetic particles of iron oxides (Fe3O4/γ-Fe2O3) and applied as a heterogeneous biocatalyst in the synthesis of ethyl esters (biodiesel) in a solvent-free medium on a continuous process. Magnetic particles were synthesized by alkaline co-precipitation, silanized, activated and subsequently used for immobilization of Burkholderia cepacia lipase. The results regarding the lipase immobilization showed an enzyme activity retention of about 53% and an increase in the KM value in about threefold (from 410 to 1262 mmol L−1) and a decrease in the Vmax value in sevenfold (From 12,390 to 1786 U g−1) when compared with the free enzyme. The immobilization process favored the thermal stability and increased the half-time of the enzyme about tenfold at 50 °C. The immobilized derivative was evaluated to aroma production and the activity of esterification was calculated as being 56.7 μmol L−1 g−1 min−1, which corresponds to a productivity value of 0.58 g ester L−1 h−1. The immobilized system was also used to mediate transesterification of kernel oil in a fixed bed reactor operating in a continuous flow with a reaction medium composed of oil and ethanol at a molar ratio of 1:12, 50 °C and space–time of 16 h. The operational stability of the immobilized lipase estimated at 47 days allowed to operate the reactor with high productivity of 38.7 ± 0.7 mg g−1 h−1. Also, the product properties of the ester content (> 96.5%) and kinematic viscosity value (5.32 ± 0.4 mm2 s−1 at 40 °C) meet the requirements of the ANP and ASTM (D6751) for biodiesel fuel. Graphic Abstract: [Figure not available: see fulltext.]

Descrição

Palavras-chave

Biodiesel, Continuous reaction, Enzyme immobilization, Lipase, Magnetic nanoparticles

Idioma

Inglês

Como citar

Catalysis Letters.

Itens relacionados

Financiadores

Unidades

Unidade
Faculdade de Ciências Farmacêuticas
FCF
Campus: Araraquara

Departamentos

Cursos de graduação

Programas de pós-graduação