Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Fuzzy Logic and Artificial Neural Network Perceptron Multi-Layer and Radial Basis in Estimating Marandu Grass Yield in Integrated Systems

dc.contributor.authorBonini Neto, Alfredo [UNESP]
dc.contributor.authorMoreira, Adônis
dc.contributor.authordos Santos Batista Bonini, Carolina [UNESP]
dc.contributor.authorCampos, Marcelo [UNESP]
dc.contributor.authorAndrighetto, Cristiana [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionEmpresa Brasileira de Pesquisa Agropecuária (EMBRAPA)
dc.date.accessioned2025-04-29T19:27:57Z
dc.date.issued2023-01-01
dc.description.abstractThe integrated crop-livestock-forest (ICLF) system integrates different components of animal husbandry. The implementation of this system aims at sustainability, seeking to exploit the area as much as possible, in addition to reducing the impact on the physical, chemical, and biological properties of the soil. With technological advances and numerous variables, fuzzy logic, and artificial neural networks (ANNs) have been used for data classification and estimation. This study aims to estimate the Marandu grass yield in integrated systems using the input, volume of rainfall, and experimental period. A performance of approximately 0.077 was observed for the mean square error (MSE), and the radial basis in estimation (RBR) network had an error of 0.255%, which is much lower than that of the multi-layer perceptron (MLP) network and methodology based on fuzzy logic, with errors of 2.713 and 10.840%, respectively, between the obtained and expected output. This indicates that the quality of the grass was better with one or three eucalyptus lines in the ICLF system and demonstrates the application efficiency of the model with a tool for forecasting the Marandu grass yield in the studied soil and climate conditions.en
dc.description.affiliationFCE São Paulo State University, São Paulo State
dc.description.affiliationDepartment of Soil Science Embrapa Soja, Paraná State
dc.description.affiliationFCAT São Paulo State University, São Paulo State
dc.description.affiliationUnespFCE São Paulo State University, São Paulo State
dc.description.affiliationUnespFCAT São Paulo State University, São Paulo State
dc.format.extent2965-2976
dc.identifierhttp://dx.doi.org/10.1080/00103624.2023.2252839
dc.identifier.citationCommunications in Soil Science and Plant Analysis, v. 54, n. 21, p. 2965-2976, 2023.
dc.identifier.doi10.1080/00103624.2023.2252839
dc.identifier.issn1532-2416
dc.identifier.issn0010-3624
dc.identifier.scopus2-s2.0-85169832255
dc.identifier.urihttps://hdl.handle.net/11449/302865
dc.language.isoeng
dc.relation.ispartofCommunications in Soil Science and Plant Analysis
dc.sourceScopus
dc.subjectArtificial intelligence
dc.subjectestimation
dc.subjectmathematical modeling
dc.subjectpasture
dc.titleFuzzy Logic and Artificial Neural Network Perceptron Multi-Layer and Radial Basis in Estimating Marandu Grass Yield in Integrated Systemsen
dc.typeArtigopt
dspace.entity.typePublication
relation.isOrgUnitOfPublication645fc506-d696-4eff-bf29-45e82e484198
relation.isOrgUnitOfPublication.latestForDiscovery645fc506-d696-4eff-bf29-45e82e484198
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências e Engenharia, Tupãpt
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Tecnológicas, Dracenapt

Arquivos