Publicação:
Propriedades de transporte caótico em mapeamentos Hamiltonianos não lineares

Carregando...
Imagem de Miniatura

Data

2020-02-27

Orientador

Leonel, Edson Denis

Coorientador

Pós-graduação

Física - IGCE

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Estadual Paulista (Unesp)

Tipo

Dissertação de mestrado

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Resumo (português)

O tema principal deste trabalho é o estudo de algumas propriedades de transporte caótico presentes em mapeamentos Hamiltonianos não lineares. O mapeamento discreto de investigação é descrito por duas equações de recorrência, a primeira referente a coordenada ação, J, e a segunda a coordenada ângulo, θ. O sistema tem dois parâmetros de controle, ε que controla a transição de integrável, quando ε = 0, para não integrável, quando ε ≠ 0 ; e γ que fornece a forma da divergência da variável θ. Partı́culas presentes na região de caos não podem adentrar à região das ilhas de estabilidade, do mesmo modo que não podem cruzar as curvas invariantes, o que acarretaria na violação do teorema de Liouville.Entretanto, quando as partı́culas passam próximas às ilhas de estabilidade assim como próximas às curvas invariantes elas podem ficar aprisionadas temporariamente afetando as propriedades de transporte ao longo do caos. Investigaremos como ocorre o transporte de partı́culas em diferentes regiões do caos e a influência das ilhas de estabilidade em tal transporte.

Resumo (inglês)

The main theme of this work is the study of some chaotic transport properties present in nonlinear Hamiltonian mappings. The discrete investigation mapping is described by two recurrence equations, the first one for the action coordinate, J, and the second for the angle coordinate, θ. The system has two control parameters, ε which controls the transition from integrable when ε = 0 to non-integrable when ε ≠ 0; and γ which gives the divergence form of the θ variable. Particles present in the region of chaos can not enter the region of the periodic islands as well as can not cross invariant curves, resulting in violation of Liouville’s theorem. However when particles pass close to the islands of stability as well as near invariant curves they can be temporarily trapped affecting the transport properties along the chaos. We will investigate how the particle’s transport occurs in different regions of chaos such as the influence of stability islands on such transport.

Descrição

Idioma

Português

Como citar

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação