A machine learning strategy for computing interface curvature in Front-Tracking methods
Carregando...
Arquivos
Fonte externa
Fonte externa
Data
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fonte externa
Fonte externa
Resumo
In this work we have described the application of a machine learning strategy to compute the interface curvature in the context of a Front-Tracking framework. Based on angular information of normal and tangential vectors between marker points, the interface curvature is predicted using a neural network. The Front-Tracking-Machine-Learning method is validated using a sine wave and then applied in combination with a Marker-And-Cell method for solving a complex free surface flow. Our results indicate that it is feasible to employ machine learning concepts as an alternative approach for computing curvatures in Front-Tracking schemes.
Descrição
Palavras-chave
Curvature, Free surface flows, Front-Tracking, Machine learning, Marker-and-cell
Idioma
Inglês
Citação
Journal of Computational Physics, v. 450.


