A machine learning strategy for computing interface curvature in Front-Tracking methods
dc.contributor.author | França, Hugo L. | |
dc.contributor.author | Oishi, Cassio M. [UNESP] | |
dc.contributor.institution | Universidade de São Paulo (USP) | |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
dc.date.accessioned | 2022-04-29T08:36:54Z | |
dc.date.available | 2022-04-29T08:36:54Z | |
dc.date.issued | 2022-02-01 | |
dc.description.abstract | In this work we have described the application of a machine learning strategy to compute the interface curvature in the context of a Front-Tracking framework. Based on angular information of normal and tangential vectors between marker points, the interface curvature is predicted using a neural network. The Front-Tracking-Machine-Learning method is validated using a sine wave and then applied in combination with a Marker-And-Cell method for solving a complex free surface flow. Our results indicate that it is feasible to employ machine learning concepts as an alternative approach for computing curvatures in Front-Tracking schemes. | en |
dc.description.affiliation | Instituto de Ciências Matemáticas e Computação Universidade de São Paulo | |
dc.description.affiliation | Departamento de Matemática e Computação Faculdade de Ciências e Tecnologia Universidade Estadual Paulista “Júlio de Mesquita Filho” | |
dc.description.affiliationUnesp | Departamento de Matemática e Computação Faculdade de Ciências e Tecnologia Universidade Estadual Paulista “Júlio de Mesquita Filho” | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorshipId | FAPESP: 2013/07375-0 | |
dc.description.sponsorshipId | FAPESP: 2019/01811-9 | |
dc.description.sponsorshipId | CNPq: 305383/2019-1 | |
dc.identifier | http://dx.doi.org/10.1016/j.jcp.2021.110860 | |
dc.identifier.citation | Journal of Computational Physics, v. 450. | |
dc.identifier.doi | 10.1016/j.jcp.2021.110860 | |
dc.identifier.issn | 1090-2716 | |
dc.identifier.issn | 0021-9991 | |
dc.identifier.scopus | 2-s2.0-85120343716 | |
dc.identifier.uri | http://hdl.handle.net/11449/229983 | |
dc.language.iso | eng | |
dc.relation.ispartof | Journal of Computational Physics | |
dc.source | Scopus | |
dc.subject | Curvature | |
dc.subject | Free surface flows | |
dc.subject | Front-Tracking | |
dc.subject | Machine learning | |
dc.subject | Marker-and-cell | |
dc.title | A machine learning strategy for computing interface curvature in Front-Tracking methods | en |
dc.type | Artigo | |
dspace.entity.type | Publication | |
unesp.author.orcid | 0000-0002-5361-7704[1] | |
unesp.author.orcid | 0000-0002-0904-6561[2] | |
unesp.department | Matemática e Computação - FCT | pt |