Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

A binary particle swarm optimization-based pruning approach for environmentally sustainable and robust CNNs

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

Deep Convolutional Neural Networks (CNNs), continue to demonstrate remarkable performance across various tasks. However, their computational demands and energy consumption present significant drawbacks, restricting their practical deployment and contributing to a substantial carbon footprint. This paper addresses this challenge by proposing a novel method named Binary Particle Swarm Optimization Layer Pruner (BPSO-LPruner), aimed at achieving substantial computational reduction and mitigating environmental impact during CNN inference. BPSO-LPruner utilizes a constrained Binary Particle Swarm Optimization for CNN layer pruning, integrating a masked-bit strategy and a new population initialization strategy to enhance search performance. We illustrate the effectiveness of our method in reducing model computational costs and carbon footprint emissions while improving performance across multiple models (VGG16, VGG19, DenseNet-40, ResNet18, ResNet20, ResNet34, ResNet44, ResNet56, ResNet110, ResNet50, and MobileNetv2) and diverse datasets (CIFAR-10, CIFAR-100, Tiny-ImageNet, COVID-19 X-ray dataset). Promising results underscore the performance of the proposed method. Additionally, we demonstrate that layer pruning yields benefits beyond enhanced computational performance. Our experimentation reveals that BPSO-LPruner enhances the model's reliability and robustness by effectively addressing variations in input data, inherent ambiguity in model parameters, and adversarial images.

Descrição

Palavras-chave

Adversarial attacks, Binary particle swarm optimization, Bit mask strategy, Green deep learning, Layer pruning, Layer weighting initialization

Idioma

Inglês

Citação

Neurocomputing, v. 608.

Itens relacionados

Unidades

Item type:Unidade,
Faculdade de Ciências
FC
Campus: Bauru


Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso