Logo do repositório

A binary particle swarm optimization-based pruning approach for environmentally sustainable and robust CNNs

dc.contributor.authorTmamna, Jihene
dc.contributor.authorFourati, Rahma
dc.contributor.authorBen Ayed, Emna
dc.contributor.authorPassos, Leandro A. [UNESP]
dc.contributor.authorPapa, João P. [UNESP]
dc.contributor.authorBen Ayed, Mounir
dc.contributor.authorHussain, Amir
dc.contributor.institutionUniversity of Sfax
dc.contributor.institutionEconomiques et de Gestion de Jendouba
dc.contributor.institutionPolytech-Sfax (IPSAS)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionEdinburgh Napier University
dc.date.accessioned2025-04-29T18:06:10Z
dc.date.issued2024-12-01
dc.description.abstractDeep Convolutional Neural Networks (CNNs), continue to demonstrate remarkable performance across various tasks. However, their computational demands and energy consumption present significant drawbacks, restricting their practical deployment and contributing to a substantial carbon footprint. This paper addresses this challenge by proposing a novel method named Binary Particle Swarm Optimization Layer Pruner (BPSO-LPruner), aimed at achieving substantial computational reduction and mitigating environmental impact during CNN inference. BPSO-LPruner utilizes a constrained Binary Particle Swarm Optimization for CNN layer pruning, integrating a masked-bit strategy and a new population initialization strategy to enhance search performance. We illustrate the effectiveness of our method in reducing model computational costs and carbon footprint emissions while improving performance across multiple models (VGG16, VGG19, DenseNet-40, ResNet18, ResNet20, ResNet34, ResNet44, ResNet56, ResNet110, ResNet50, and MobileNetv2) and diverse datasets (CIFAR-10, CIFAR-100, Tiny-ImageNet, COVID-19 X-ray dataset). Promising results underscore the performance of the proposed method. Additionally, we demonstrate that layer pruning yields benefits beyond enhanced computational performance. Our experimentation reveals that BPSO-LPruner enhances the model's reliability and robustness by effectively addressing variations in input data, inherent ambiguity in model parameters, and adversarial images.en
dc.description.affiliationResearch Groups in Intelligent Machines National Engineering School of Sfax (ENIS) University of Sfax
dc.description.affiliationUniversité de Jendouba Faculté des Sciences Juridiques Economiques et de Gestion de Jendouba
dc.description.affiliationIndustry 4.0 Research Lab Polytech-Sfax (IPSAS), Avenue 5 August, Rue Said Aboubaker
dc.description.affiliationSchool of Sciences São Paulo State University
dc.description.affiliationComputer Sciences and Communication Department Faculty of Sciences of Sfax University of Sfax
dc.description.affiliationSchool of Computing Edinburgh Napier University
dc.description.affiliationUnespSchool of Sciences São Paulo State University
dc.description.sponsorshipEngineering and Physical Sciences Research Council
dc.description.sponsorshipIdEngineering and Physical Sciences Research Council: EP/M026981/1
dc.description.sponsorshipIdEngineering and Physical Sciences Research Council: EP/T021063/1
dc.description.sponsorshipIdEngineering and Physical Sciences Research Council: EP/T024917/1
dc.identifierhttp://dx.doi.org/10.1016/j.neucom.2024.128378
dc.identifier.citationNeurocomputing, v. 608.
dc.identifier.doi10.1016/j.neucom.2024.128378
dc.identifier.issn1872-8286
dc.identifier.issn0925-2312
dc.identifier.scopus2-s2.0-85202301530
dc.identifier.urihttps://hdl.handle.net/11449/297298
dc.language.isoeng
dc.relation.ispartofNeurocomputing
dc.sourceScopus
dc.subjectAdversarial attacks
dc.subjectBinary particle swarm optimization
dc.subjectBit mask strategy
dc.subjectGreen deep learning
dc.subjectLayer pruning
dc.subjectLayer weighting initialization
dc.titleA binary particle swarm optimization-based pruning approach for environmentally sustainable and robust CNNsen
dc.typeArtigopt
dspace.entity.typePublication
relation.isOrgUnitOfPublicationaef1f5df-a00f-45f4-b366-6926b097829b
relation.isOrgUnitOfPublication.latestForDiscoveryaef1f5df-a00f-45f4-b366-6926b097829b
unesp.author.orcid0000-0002-0537-1746[1]
unesp.author.orcid0000-0001-8783-6895 0000-0001-8783-6895[2]
unesp.author.orcid0000-0003-3529-3109[4]
unesp.author.orcid0000-0002-6494-7514[5]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt

Arquivos