Logo do repositório

A multiple labeling-based optimum-path forest for video content classification

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

Multiple-labeling classification approaches attempt to handle applications that associate more than one label to a given sample. Since we have an increasing number of systems that are guided by such assumption, in this paper we have presented a multiple-labeling approach for the Optimum-Path Forest (OPF) classifier based on the problem transformation method. In order to validate our proposal, a multi-labeled video classification dataset has been used to compare OPF against three other classifiers and another variant of the OPF classifier based on a k-neighborhood. The results have shown the validity of the OPF-based classifiers for multi-labeling classification problems. © 2013 IEEE.

Descrição

Palavras-chave

Image motion analysis, Multi-label learning, Optimum-Path Forest, Video signal classification

Idioma

Inglês

Citação

Brazilian Symposium of Computer Graphic and Image Processing, p. 334-340.

Itens relacionados

Financiadores

Unidades

Item type:Unidade,
Faculdade de Ciências
FC
Campus: Bauru


Departamentos

Cursos de graduação

Programas de pós-graduação