Logo do repositório

A multiple labeling-based optimum-path forest for video content classification

dc.contributor.authorPereira, Luis A.M. [UNESP]
dc.contributor.authorPapa, J. Paulo [UNESP]
dc.contributor.authorAlmeida, Jurandy
dc.contributor.authorTorres, Ricardo Da S.
dc.contributor.authorAmorim, Willian Paraguassu
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionFederal University of Mato Grosso Do sul
dc.date.accessioned2022-04-29T07:13:13Z
dc.date.available2022-04-29T07:13:13Z
dc.date.issued2013-12-01
dc.description.abstractMultiple-labeling classification approaches attempt to handle applications that associate more than one label to a given sample. Since we have an increasing number of systems that are guided by such assumption, in this paper we have presented a multiple-labeling approach for the Optimum-Path Forest (OPF) classifier based on the problem transformation method. In order to validate our proposal, a multi-labeled video classification dataset has been used to compare OPF against three other classifiers and another variant of the OPF classifier based on a k-neighborhood. The results have shown the validity of the OPF-based classifiers for multi-labeling classification problems. © 2013 IEEE.en
dc.description.affiliationDepartment of Computing Sao Paulo State University, Bauru
dc.description.affiliationInstitute of Computing University of Campinas, Campinas
dc.description.affiliationInstitute of Computing Federal University of Mato Grosso Do sul, Campo Grande
dc.description.affiliationUnespDepartment of Computing Sao Paulo State University, Bauru
dc.format.extent334-340
dc.identifierhttp://dx.doi.org/10.1109/SIBGRAPI.2013.53
dc.identifier.citationBrazilian Symposium of Computer Graphic and Image Processing, p. 334-340.
dc.identifier.doi10.1109/SIBGRAPI.2013.53
dc.identifier.issn1530-1834
dc.identifier.scopus2-s2.0-84891545220
dc.identifier.urihttp://hdl.handle.net/11449/227415
dc.language.isoeng
dc.relation.ispartofBrazilian Symposium of Computer Graphic and Image Processing
dc.sourceScopus
dc.subjectImage motion analysis
dc.subjectMulti-label learning
dc.subjectOptimum-Path Forest
dc.subjectVideo signal classification
dc.titleA multiple labeling-based optimum-path forest for video content classificationen
dc.typeTrabalho apresentado em eventopt
dspace.entity.typePublication
relation.isDepartmentOfPublication872c0bbb-bf84-404e-9ca7-f87a0fe94e58
relation.isDepartmentOfPublication.latestForDiscovery872c0bbb-bf84-404e-9ca7-f87a0fe94e58
relation.isOrgUnitOfPublicationaef1f5df-a00f-45f4-b366-6926b097829b
relation.isOrgUnitOfPublication.latestForDiscoveryaef1f5df-a00f-45f4-b366-6926b097829b
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos