A multiple labeling-based optimum-path forest for video content classification
| dc.contributor.author | Pereira, Luis A.M. [UNESP] | |
| dc.contributor.author | Papa, J. Paulo [UNESP] | |
| dc.contributor.author | Almeida, Jurandy | |
| dc.contributor.author | Torres, Ricardo Da S. | |
| dc.contributor.author | Amorim, Willian Paraguassu | |
| dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
| dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | |
| dc.contributor.institution | Federal University of Mato Grosso Do sul | |
| dc.date.accessioned | 2022-04-29T07:13:13Z | |
| dc.date.available | 2022-04-29T07:13:13Z | |
| dc.date.issued | 2013-12-01 | |
| dc.description.abstract | Multiple-labeling classification approaches attempt to handle applications that associate more than one label to a given sample. Since we have an increasing number of systems that are guided by such assumption, in this paper we have presented a multiple-labeling approach for the Optimum-Path Forest (OPF) classifier based on the problem transformation method. In order to validate our proposal, a multi-labeled video classification dataset has been used to compare OPF against three other classifiers and another variant of the OPF classifier based on a k-neighborhood. The results have shown the validity of the OPF-based classifiers for multi-labeling classification problems. © 2013 IEEE. | en |
| dc.description.affiliation | Department of Computing Sao Paulo State University, Bauru | |
| dc.description.affiliation | Institute of Computing University of Campinas, Campinas | |
| dc.description.affiliation | Institute of Computing Federal University of Mato Grosso Do sul, Campo Grande | |
| dc.description.affiliationUnesp | Department of Computing Sao Paulo State University, Bauru | |
| dc.format.extent | 334-340 | |
| dc.identifier | http://dx.doi.org/10.1109/SIBGRAPI.2013.53 | |
| dc.identifier.citation | Brazilian Symposium of Computer Graphic and Image Processing, p. 334-340. | |
| dc.identifier.doi | 10.1109/SIBGRAPI.2013.53 | |
| dc.identifier.issn | 1530-1834 | |
| dc.identifier.scopus | 2-s2.0-84891545220 | |
| dc.identifier.uri | http://hdl.handle.net/11449/227415 | |
| dc.language.iso | eng | |
| dc.relation.ispartof | Brazilian Symposium of Computer Graphic and Image Processing | |
| dc.source | Scopus | |
| dc.subject | Image motion analysis | |
| dc.subject | Multi-label learning | |
| dc.subject | Optimum-Path Forest | |
| dc.subject | Video signal classification | |
| dc.title | A multiple labeling-based optimum-path forest for video content classification | en |
| dc.type | Trabalho apresentado em evento | pt |
| dspace.entity.type | Publication | |
| relation.isDepartmentOfPublication | 872c0bbb-bf84-404e-9ca7-f87a0fe94e58 | |
| relation.isDepartmentOfPublication.latestForDiscovery | 872c0bbb-bf84-404e-9ca7-f87a0fe94e58 | |
| relation.isOrgUnitOfPublication | aef1f5df-a00f-45f4-b366-6926b097829b | |
| relation.isOrgUnitOfPublication.latestForDiscovery | aef1f5df-a00f-45f4-b366-6926b097829b | |
| unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências, Bauru | pt |
| unesp.department | Computação - FC | pt |
