Desenvolvimento de transistores verticais de efeito de campo impressos
Carregando...
Arquivos
Data
Autores
Orientador
Alves, Neri 

Coorientador
Pós-graduação
Ciência e Tecnologia de Materiais - FCT
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Estadual Paulista (Unesp)
Tipo
Tese de doutorado
Direito de acesso
Acesso aberto

Resumo
Resumo (português)
Atualmente, os transistores com gate eletrolítico (EGTs) e transistores de efeito de campo com arquitetura vertical e barreira Schottky (SB-VFETs) são alternativas promissoras aos transistores convencionais, principalmente visando o desenvolvimento de uma eletrônica impressa. Em particular, camadas ativas baseadas no uso de óxidos metálicos semicondutores como o óxido de zinco (ZnO) se destaca devido à alta mobilidade e transparência aliadas a uma compatibilidade com processamento por solução. Embora o número de publicações nesses tópicos venha aumentando significativamente, um transistor de arquitetura vertical que contenha gate eletrolítico e camada ativa de óxido semicondutor não foi reportado até o momento. Neste estudo, propomos uma rota com baixo-custo de implementação baseada em um transistor eletrolítico vertical (EG-SB-VFET) com camada semicondutora de ZnO depositada por spray. Desta forma, alcançamos um desempenho notável para um transistor com baixa voltagem de operação devido ao caráter eletrolítico, aliada à arquitetura vertical que contorna a necessidade de microfabricação de alta resolução. Tal objetivo demandou diferentes etapas, nas quais foram estudados diferentes materiais e desenvolvidos três dispositivos elementares: diodo Schottky, EGT e o EG-SB-VFET. A avaliação dos diodos Schottky baseou-se no pós-processamento de dados experimentais de corrente-voltagem por meio da aplicação de métodos analíticos complementares (Mikhelashvili, Werner e Cheung). Destacam-se valores de resistência em série de ~200 Ω e altura de barreira de ~0,75 eV para a junção ZnO/AgNW. O desempenho do EGT padrão de ZnO depositado por spray pirólise foi usado como referência para os transistores verticais. Os principais parâmetros calculados foram mobilidade de efeito de campo de ~11 cm2 V-1 s-1, transcondutância de ~2,46 mS e subthreshold swing de ~0,13 V dec-1. Quanto aos EG-SB-VFET, foram calculadas as principais figuras-de-mérito a partir da curva de transferência, que incluem densidade de corrente de ~111 mA cm-2, transcondutância de ~4,7 mS e subthreshold swing de ~0,22 V dec-1. Em relação à modulação da corrente nas curvas de saída, verificou-se que dependendo da forma com que os eletrodos são polarizados, o mesmo dispositivo pode-se comportar de forma similar a um diodo ou a um transistor. Conclui-se que o desempenho reportado dos EG-SB-VFETs é atrativo, pois sem a necessidade de eletrodos de fonte e dreno coplanares de alta resolução atingem-se valores semelhantes ao EGT padrão. Assim, a arquitetura EG-SB-VFET baseada em ZnO e AgNW é uma forma inovadora de contornar os principais desafios dos TFTs convencionais.
Resumo (inglês)
Nowadays, electrolyte-gated transistors (EGT) and Schottky barrier vertical field-effect transistors (SB-VFET) are better options for the development of printed electronics than conventional transistors. In particular, the use of a metal oxide semiconducting layer as zinc oxide (ZnO) stands out because of its high mobility and transparency integrated with the solution-processed advantages. Even though the publications on the above topics have faced a fast-growing, a vertical transistor composed of an electrolytic gate and an active layer based on an oxide semiconductor is still missing. Here, we report a low-cost vertical electrolyte transistor (EG-SB-VFET) using spray-deposited ZnO as the semiconductor. This approach enables a notable performance with a low-voltage transistor operation resulting from electrolytic character. Besides, the vertical structure circumvents the need for high-resolution microfabrication. The main goal demanded several steps, in which we studied different materials and developed three ZnO-based devices: Schottky diode, EGT, and the EG-SB-VFET. We evaluated the Schottky diodes based on the post-processing of the experimental current-voltage data by applying different analytical methods (Mikhelashvili, Werner and Cheung). We achieved a series resistance of ~200 Ω and a barrier height of ~0,75 eV for the ZnO/AgNW junction. We used the performance of the standard EGTs using ZnO by spray pyrolysis as the benchmark for the vertical architecture ones. The main parameters are field-effect mobility of ~11 cm2 V-1 s-1, a transconductance of ~2.4 mS and a subthreshold swing of ~0.13 V dec-1. For the EG-SB-VFET, we calculated the main figure-of-merit from the transfer curves, which are a current density of ~111 mA cm-2, a transconductance of ~4.7 mS and a subthreshold swing of ~0,22 V dec-1. By analyzing the current modulation on output curves, it is clear that we can control the electric behavior based on the bias connections once the same device can behave in a diode or a transistor mode. In conclusion, the achieved EG-SB-VFETs performance without high-resolution patterns is even better than the standard micrometric-sized EGT. Therefore, the EG-SB-VFET based on spray-deposited ZnO and AgNW layers is an innovative way to circumvent the challenges of conventional TFTs.
Descrição
Palavras-chave
Eletrônica impressa, Transistor eletrolítico vertical, Óxido de zinco, AgNW, Printed electronics, Vertical electrolyte-gated transistor, Zinc oxide, Silver nanowire
Idioma
Português