Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Hyperbolic quantum color codes with normal subgroup structure derived from the Reidemeister–Schreier method

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

Given the importance of hyperbolic quantum color codes and Euclidean quantum color codes, this paper considers the study of the former codes on compact surfaces with genus g≥2 from the mathematical point of view. Identifying the normal subgroup in the decomposition of the full symmetry group of the {p,3} tessellation is relevant because it provides the algebraic structure for identifying and constructing a class of linear shrunk hyperbolic quantum color codes. Under this assumption, the normal subgroup’s presentation, the whole process’s kernel, is derived from the Reidemeister–Schreier method. As a result, we present a class of regular normal hyperbolic quantum color codes derived from the {6j,3} tessellation with encoding rate going asymptotically to 1. The regular tessellation {6j,3} includes the two types of tessellations: (1) the densest tessellation {12i-6,3} when j=2i-1 and (2) the tessellation {12i,3} when j=2i, for i∈N. An analysis of the minimum distance achieved by this class of regular normal hyperbolic quantum color codes is performed.

Descrição

Palavras-chave

22E30, 30F35, 51M10, 53Z30, Hyperbolic geometry, Normal hyperbolic quantum color codes, Quantum color codes, Reidemeister–Schreier method

Idioma

Inglês

Citação

Computational and Applied Mathematics, v. 43, n. 4, 2024.

Itens relacionados

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso