Logo do repositório

Hyperbolic quantum color codes with normal subgroup structure derived from the Reidemeister–Schreier method

dc.contributor.authorAlbuquerque, Clarice Dias
dc.contributor.authorLazari, Henrique [UNESP]
dc.contributor.authorPalazzo, Reginaldo
dc.contributor.authorCampos, Daniel Silva
dc.contributor.institutionUniversidade Federal do Cariri
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.date.accessioned2025-04-29T20:04:14Z
dc.date.issued2024-06-01
dc.description.abstractGiven the importance of hyperbolic quantum color codes and Euclidean quantum color codes, this paper considers the study of the former codes on compact surfaces with genus g≥2 from the mathematical point of view. Identifying the normal subgroup in the decomposition of the full symmetry group of the {p,3} tessellation is relevant because it provides the algebraic structure for identifying and constructing a class of linear shrunk hyperbolic quantum color codes. Under this assumption, the normal subgroup’s presentation, the whole process’s kernel, is derived from the Reidemeister–Schreier method. As a result, we present a class of regular normal hyperbolic quantum color codes derived from the {6j,3} tessellation with encoding rate going asymptotically to 1. The regular tessellation {6j,3} includes the two types of tessellations: (1) the densest tessellation {12i-6,3} when j=2i-1 and (2) the tessellation {12i,3} when j=2i, for i∈N. An analysis of the minimum distance achieved by this class of regular normal hyperbolic quantum color codes is performed.en
dc.description.affiliationCentro de Ciência e Tecnologia Universidade Federal do Cariri, CE
dc.description.affiliationDepartamento de Matemática Universidade Estadual Paulista, SP
dc.description.affiliationDepartamento de Comunicações FEEC Universidade de Campinas, SP
dc.description.affiliationUnespDepartamento de Matemática Universidade Estadual Paulista, SP
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)
dc.description.sponsorshipIdCAPES: 001
dc.description.sponsorshipIdCNPq: 305239/2020-1
dc.description.sponsorshipIdCNPq: 425224/2016-3
dc.description.sponsorshipIdFAPEMIG: APQ-00019-21
dc.identifierhttp://dx.doi.org/10.1007/s40314-024-02710-w
dc.identifier.citationComputational and Applied Mathematics, v. 43, n. 4, 2024.
dc.identifier.doi10.1007/s40314-024-02710-w
dc.identifier.issn1807-0302
dc.identifier.issn2238-3603
dc.identifier.scopus2-s2.0-85190806677
dc.identifier.urihttps://hdl.handle.net/11449/305796
dc.language.isoeng
dc.relation.ispartofComputational and Applied Mathematics
dc.sourceScopus
dc.subject22E30
dc.subject30F35
dc.subject51M10
dc.subject53Z30
dc.subjectHyperbolic geometry
dc.subjectNormal hyperbolic quantum color codes
dc.subjectQuantum color codes
dc.subjectReidemeister–Schreier method
dc.titleHyperbolic quantum color codes with normal subgroup structure derived from the Reidemeister–Schreier methoden
dc.typeArtigopt
dspace.entity.typePublication

Arquivos

Coleções