Hyperbolic quantum color codes with normal subgroup structure derived from the Reidemeister–Schreier method
| dc.contributor.author | Albuquerque, Clarice Dias | |
| dc.contributor.author | Lazari, Henrique [UNESP] | |
| dc.contributor.author | Palazzo, Reginaldo | |
| dc.contributor.author | Campos, Daniel Silva | |
| dc.contributor.institution | Universidade Federal do Cariri | |
| dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
| dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | |
| dc.date.accessioned | 2025-04-29T20:04:14Z | |
| dc.date.issued | 2024-06-01 | |
| dc.description.abstract | Given the importance of hyperbolic quantum color codes and Euclidean quantum color codes, this paper considers the study of the former codes on compact surfaces with genus g≥2 from the mathematical point of view. Identifying the normal subgroup in the decomposition of the full symmetry group of the {p,3} tessellation is relevant because it provides the algebraic structure for identifying and constructing a class of linear shrunk hyperbolic quantum color codes. Under this assumption, the normal subgroup’s presentation, the whole process’s kernel, is derived from the Reidemeister–Schreier method. As a result, we present a class of regular normal hyperbolic quantum color codes derived from the {6j,3} tessellation with encoding rate going asymptotically to 1. The regular tessellation {6j,3} includes the two types of tessellations: (1) the densest tessellation {12i-6,3} when j=2i-1 and (2) the tessellation {12i,3} when j=2i, for i∈N. An analysis of the minimum distance achieved by this class of regular normal hyperbolic quantum color codes is performed. | en |
| dc.description.affiliation | Centro de Ciência e Tecnologia Universidade Federal do Cariri, CE | |
| dc.description.affiliation | Departamento de Matemática Universidade Estadual Paulista, SP | |
| dc.description.affiliation | Departamento de Comunicações FEEC Universidade de Campinas, SP | |
| dc.description.affiliationUnesp | Departamento de Matemática Universidade Estadual Paulista, SP | |
| dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
| dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
| dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) | |
| dc.description.sponsorshipId | CAPES: 001 | |
| dc.description.sponsorshipId | CNPq: 305239/2020-1 | |
| dc.description.sponsorshipId | CNPq: 425224/2016-3 | |
| dc.description.sponsorshipId | FAPEMIG: APQ-00019-21 | |
| dc.identifier | http://dx.doi.org/10.1007/s40314-024-02710-w | |
| dc.identifier.citation | Computational and Applied Mathematics, v. 43, n. 4, 2024. | |
| dc.identifier.doi | 10.1007/s40314-024-02710-w | |
| dc.identifier.issn | 1807-0302 | |
| dc.identifier.issn | 2238-3603 | |
| dc.identifier.scopus | 2-s2.0-85190806677 | |
| dc.identifier.uri | https://hdl.handle.net/11449/305796 | |
| dc.language.iso | eng | |
| dc.relation.ispartof | Computational and Applied Mathematics | |
| dc.source | Scopus | |
| dc.subject | 22E30 | |
| dc.subject | 30F35 | |
| dc.subject | 51M10 | |
| dc.subject | 53Z30 | |
| dc.subject | Hyperbolic geometry | |
| dc.subject | Normal hyperbolic quantum color codes | |
| dc.subject | Quantum color codes | |
| dc.subject | Reidemeister–Schreier method | |
| dc.title | Hyperbolic quantum color codes with normal subgroup structure derived from the Reidemeister–Schreier method | en |
| dc.type | Artigo | pt |
| dspace.entity.type | Publication |

