Logotipo do repositório
 

Publicação:
Optimum-Path Forest based on k-connectivity: Theory and applications

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Elsevier B.V.

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Graph-based pattern recognition techniques have been in the spotlight for many years, since there is a constant need for faster and more effective approaches. Among them, the Optimum-Path Forest (OPF) framework has gained considerable attention in the last years, mainly due to the promising results obtained by OPF-based classifiers, which range from unsupervised, semi-supervised and supervised learning. In this paper, we consider a deeper theoretical explanation concerning the supervised OPF classifier with k-neighborhood (OPFk), as well as we proposed two different training and classification algorithms that allow OPFk to work faster. The experimental validation against standard OPF and Support Vector Machines also validates the robustness of OPFk in real and synthetic datasets. (C) 2016 Elsevier B.V. All rights reserved.

Descrição

Palavras-chave

Pattern classification, Optimum-Path Forest, Supervised learning

Idioma

Inglês

Como citar

Pattern Recognition Letters. Amsterdam: Elsevier Science Bv, v. 87, p. 117-126, 2017.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação