Logotipo do repositório
 

Publicação:
Optimum-Path Forest based on k-connectivity: Theory and applications

dc.contributor.authorPapa, Joao Paulo [UNESP]
dc.contributor.authorNachif Fernandes, Silas Evandro
dc.contributor.authorFalcao, Alexandre Xavier
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.date.accessioned2018-11-26T17:20:52Z
dc.date.available2018-11-26T17:20:52Z
dc.date.issued2017-02-01
dc.description.abstractGraph-based pattern recognition techniques have been in the spotlight for many years, since there is a constant need for faster and more effective approaches. Among them, the Optimum-Path Forest (OPF) framework has gained considerable attention in the last years, mainly due to the promising results obtained by OPF-based classifiers, which range from unsupervised, semi-supervised and supervised learning. In this paper, we consider a deeper theoretical explanation concerning the supervised OPF classifier with k-neighborhood (OPFk), as well as we proposed two different training and classification algorithms that allow OPFk to work faster. The experimental validation against standard OPF and Support Vector Machines also validates the robustness of OPFk in real and synthetic datasets. (C) 2016 Elsevier B.V. All rights reserved.en
dc.description.affiliationSao Paulo State Univ, Dept Comp, Av Eng Luiz Edmundo Carrijo Coube, BR-17033360 Bauru, SP, Brazil
dc.description.affiliationUniv Fed Sao Carlos, Dept Comp, Rod Washington Luis,Km 235, BR-13565905 Sao Carlos, SP, Brazil
dc.description.affiliationUniv Estadual Campinas, Inst Comp, Av Albert Einstein 1251, BR-13083852 Campinas, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp, Av Eng Luiz Edmundo Carrijo Coube, BR-17033360 Bauru, SP, Brazil
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdCAPES: 2966/2014
dc.description.sponsorshipIdFAPESP: 2009/16206-1
dc.description.sponsorshipIdFAPESP: 2013/20387-7
dc.description.sponsorshipIdFAPESP: 2014/2014/16250-9
dc.description.sponsorshipIdCNPq: 303182/2011-3
dc.description.sponsorshipIdCNPq: 70571/2013-6
dc.description.sponsorshipIdCNPq: 306166/2014-3
dc.format.extent117-126
dc.identifierhttp://dx.doi.org/10.1016/j.patrec.2016.07.026
dc.identifier.citationPattern Recognition Letters. Amsterdam: Elsevier Science Bv, v. 87, p. 117-126, 2017.
dc.identifier.doi10.1016/j.patrec.2016.07.026
dc.identifier.fileWOS000395616700015.pdf
dc.identifier.issn0167-8655
dc.identifier.urihttp://hdl.handle.net/11449/162543
dc.identifier.wosWOS:000395616700015
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofPattern Recognition Letters
dc.relation.ispartofsjr0,662
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectPattern classification
dc.subjectOptimum-Path Forest
dc.subjectSupervised learning
dc.titleOptimum-Path Forest based on k-connectivity: Theory and applicationsen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
unesp.author.orcid0000-0002-6494-7514[1]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000395616700015.pdf
Tamanho:
1.56 MB
Formato:
Adobe Portable Document Format
Descrição: