Publicação:
Potências fracionárias de operadores: resultados teóricos

Carregando...
Imagem de Miniatura

Data

2016-02-23

Orientador

Lozada-Cruz, German

Coorientador

Pós-graduação

Matemática - IBILCE

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Estadual Paulista (Unesp)

Tipo

Dissertação de mestrado

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Resumo (português)

Neste trabalho são definidas as potências fracionárias de operadores lineares não-negativos via abordagem de Balakrishnan/Komatsu e exibidas as principais propriedades para as potências desses operadores. Estes são construídos por meio do Cálculo Funcional de Hirsh a fim de que a aditividade e multiplicatividade nos expoentes sejam preservadas. Um breve estudo das potências fracionárias ´e dedicado ao operador laplaciano distribucional −∆p, o qual ´e parte bastante recorrente em equações do calor semilinear. Um exemplo desse tipo de equação ´e estudado no capítulo final deste trabalho

Resumo (inglês)

This work is concerned to define the fractional powers of non negative linear operators via Balakrisnan/Komatsu’s approach and to show the main properties for the powers of such operators. They are built by mean of Hirsch Functional Calculus aiming to preserve additivity and multiplicativity of exponents. A brief study of fractional powers is devoted to distributional Laplacian −∆p, which appears very often in semilinear heat equations. An example of such equation is discussed in the last chapter.

Descrição

Idioma

Português

Como citar

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação