Logotipo do repositório
 

Publicação:
Parkinson's disease identification through Optimum-Path Forest

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Artificial intelligence techniques have been extensively used for the identification of several disorders related with the voice signal analysis, such as Parkinson's disease (PD). However, some of these techniques flaw by assuming some separability in the original feature space or even so in the one induced by a kernel mapping. In this paper we propose the PD automatic recognition by means of Optimum-Path Forest (OPF), which is a new recently developed pattern recognition technique that does not assume any shape/separability of the classes/feature space. The experiments showed that OPF outperformed Support Vector Machines, Artificial Neural Networks and other commonly used supervised classification techniques for PD identification. © 2010 IEEE.

Descrição

Palavras-chave

Artificial intelligence techniques, Artificial Neural Network, Automatic recognition, Commonly used, Feature space, Kernel mapping, Parkinson's disease, Pattern recognition techniques, PD identification, Supervised classification, Diseases, Pattern recognition, Neural networks

Idioma

Inglês

Como citar

2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10, p. 6087-6090.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação