Logo do repositório
 

Parkinson's disease identification through Optimum-Path Forest

dc.contributor.authorSpadoto, André A.
dc.contributor.authorGuido, Rodrigo C.
dc.contributor.authorPapa, João Paulo [UNESP]
dc.contributor.authorFalcão, Alexandre X.
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionInstitute of Computing
dc.date.accessioned2014-05-27T11:25:19Z
dc.date.available2014-05-27T11:25:19Z
dc.date.issued2010-12-01
dc.description.abstractArtificial intelligence techniques have been extensively used for the identification of several disorders related with the voice signal analysis, such as Parkinson's disease (PD). However, some of these techniques flaw by assuming some separability in the original feature space or even so in the one induced by a kernel mapping. In this paper we propose the PD automatic recognition by means of Optimum-Path Forest (OPF), which is a new recently developed pattern recognition technique that does not assume any shape/separability of the classes/feature space. The experiments showed that OPF outperformed Support Vector Machines, Artificial Neural Networks and other commonly used supervised classification techniques for PD identification. © 2010 IEEE.en
dc.description.affiliationInstitute of Physics at São Carlos University of São Paulo, São Carlos
dc.description.affiliationDepartment of Computing Universidade Estadual Paulista (UNESP), Bauru
dc.description.affiliationInstitute of Computing, Campinas
dc.description.affiliationUnespDepartment of Computing Universidade Estadual Paulista (UNESP), Bauru
dc.format.extent6087-6090
dc.identifierhttp://dx.doi.org/10.1109/IEMBS.2010.5627634
dc.identifier.citation2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10, p. 6087-6090.
dc.identifier.doi10.1109/IEMBS.2010.5627634
dc.identifier.lattes9039182932747194
dc.identifier.lattes6542086226808067
dc.identifier.orcid0000-0002-0924-8024
dc.identifier.scopus2-s2.0-78650818582
dc.identifier.urihttp://hdl.handle.net/11449/72041
dc.language.isoeng
dc.relation.ispartof2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC'10
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectArtificial intelligence techniques
dc.subjectArtificial Neural Network
dc.subjectAutomatic recognition
dc.subjectCommonly used
dc.subjectFeature space
dc.subjectKernel mapping
dc.subjectParkinson's disease
dc.subjectPattern recognition techniques
dc.subjectPD identification
dc.subjectSupervised classification
dc.subjectDiseases
dc.subjectPattern recognition
dc.subjectNeural networks
dc.titleParkinson's disease identification through Optimum-Path Foresten
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dspace.entity.typePublication
unesp.author.lattes9039182932747194
unesp.author.lattes6542086226808067[2]
unesp.author.orcid0000-0002-0924-8024[2]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos