Logo do repositório

Tailoring Mesalazine Nanosuspension Using Chitosan Polyelectrolyte Complexes with Alginate and Alginate/Hydroxypropyl-Methylcellulose Phthalate

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

Background/Objectives: This study evaluated how the relative proportion of chitosan (CS) to the polyanions alginate (ALG) and hydroxypropyl-methylcellulose phthalate (HP) affects the colloidal properties of mesalazine (MSZ) nanosuspensions as a strategy to produce particles with specific characteristics. Methods: Nanosuspensions were prepared using a bottom–up approach based on acid–base reactions and were modified with CS in a binary mixture with ALG or a ternary mixture with ALG and HP. The particle size, polydispersity index (PDI), zeta potential, morphology, and drug association efficiency were analyzed. Results: Higher proportions of CS relative to the polyanions resulted in smaller, less polydisperse particles. The zeta potential inversion was influenced by the relative proportion of CS in the system. These results were consistent over 30 days and pH exerted an influence on the magnitude of the observed effect. The optimized NS modified with binary CS/ALG blends had the following properties at pH 6.0: an average particle size of 324.9 nm, PDI of 0.5, and zeta potential of +40.8 mV; at pH 4.0, it had an average particle size of 310.4 nm, PDI of 0.4, and zeta potential of +43.6 mV. The optimized NS modified with ternary CS/ALG/HP had the following properties at pH 6.0: an average particle size of 316.7 nm, PDI of 0.5, and zeta potential of +33.9 mV; at pH 4.0, it had an average particle size of 363.5 nm, PDI of 0.6, and zeta potential of +33.9 mV. Conclusions: CS-based polyelectrolyte complexes with ALG and ALG/HP offer an approach to modulating the properties of MSZ nanosuspensions, enabling the production of particles with tailored characteristics.

Descrição

Palavras-chave

alginate, chitosan, HPMC, mesalazine, nanosuspension

Idioma

Inglês

Citação

Pharmaceutics, v. 16, n. 12, 2024.

Itens relacionados

Unidades

Item type:Unidade,
Faculdade de Ciências Farmacêuticas
FCF
Campus: Araraquara


Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso