Logotipo do repositório
 

Publicação:
An adaptive concurrent multiscale model for concrete based on coupling finite elements

dc.contributor.authorRodrigues, Eduardo A.
dc.contributor.authorManzoli, Osvaldo L. [UNESP]
dc.contributor.authorBitencourt, Luís A.G.
dc.contributor.authorBittencourt, Túlio N.
dc.contributor.authorSánchez, Marcelo
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionZachry Department of Civil Engineering
dc.date.accessioned2018-12-11T16:49:32Z
dc.date.available2018-12-11T16:49:32Z
dc.date.issued2018-01-01
dc.description.abstractA new adaptive concurrent multiscale approach for modeling concrete that contemplates two well separated scales (represented by two different meshes) is proposed in this paper. The macroscale stress distribution is used as an indicator to identify critical regions (where the material is prone to degrade) with the explicit aim to enrich these zones with detailed mesoscale material information comprising three basic phases: coarse aggregates, mortar matrix and interfacial transition zone. Thus, the concrete initially idealized as a homogeneous material is gradually replaced and enhanced by a heterogeneous multiphase one. This technique is particularly powerful to handle cases where the region with nonlinear behavior is not easy to anticipate. Furthermore, the proposed approach does not require the definition of a periodic cell (or a RVE), and the meshes from distinct scales are totally independent. The new adaptive mesh technique is based on the use of coupling finite elements to enforce the continuity of displacements between the non-matching meshes associated with the two different scales of analysis. Besides that, mesh fragmentation concepts are incorporated to simulate the crack formation and propagation at the mesoscopic scale, without the need of defining complex and CPU-time demanding crack-tracking algorithms. The strategy is developed integrally within the framework of continuum mechanics, which represents an advantage with respect to other approaches based on discrete traction/separation-law. Numerical examples with complex crack patterns are conducted to validate the proposed multiscale approach. Furthermore, the efficiency and accuracy of the novel technique are compared against full mesoscale and standard concurrent multiscale models, showing excellent results.en
dc.description.affiliationUniversity of São Paulo Av. Prof. Luciano Gualberto, Trav. 3 n. 380
dc.description.affiliationSão Paulo State University UNESP/Bauru, Av. Eng. Luiz Edmundo C. Coube 14-01
dc.description.affiliationTexas A&M University Zachry Department of Civil Engineering, College Station
dc.description.affiliationUnespSão Paulo State University UNESP/Bauru, Av. Eng. Luiz Edmundo C. Coube 14-01
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2016/19479-2
dc.format.extent26-46
dc.identifierhttp://dx.doi.org/10.1016/j.cma.2017.08.048
dc.identifier.citationComputer Methods in Applied Mechanics and Engineering, v. 328, p. 26-46.
dc.identifier.doi10.1016/j.cma.2017.08.048
dc.identifier.file2-s2.0-85029712154.pdf
dc.identifier.issn0045-7825
dc.identifier.lattes7901652737291917
dc.identifier.orcid0000-0001-9004-7985
dc.identifier.scopus2-s2.0-85029712154
dc.identifier.urihttp://hdl.handle.net/11449/170157
dc.language.isoeng
dc.relation.ispartofComputer Methods in Applied Mechanics and Engineering
dc.relation.ispartofsjr2,883
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectConcrete
dc.subjectConcurrent multiscale model
dc.subjectContinuum damage model
dc.subjectCoupling finite element
dc.subjectCrack propagation
dc.subjectInterface element
dc.titleAn adaptive concurrent multiscale model for concrete based on coupling finite elementsen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.lattes7901652737291917[2]
unesp.author.orcid0000-0001-9004-7985[2]
unesp.author.orcid0000-0003-1396-3319[3]

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-85029712154.pdf
Tamanho:
6.26 MB
Formato:
Adobe Portable Document Format
Descrição:

Coleções