Logotipo do repositório
 

Publicação:
Image reconstruction from projections of digital breast tomosynthesis using deep learning

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

The Filtered Backprojection (FBP) algorithm for Computed Tomography (CT) reconstruction can be mapped entire in an Artificial Neural Network (ANN), with the backprojection (BP) operation simulated analytically in a layer and the Ram-Lak filter simulated as a convolutional layer. Thus, this work adapts the BP layer for Digital Breast Tomosynthesis (DBT) reconstruction, making possible the use of FBP simulated as an ANN to reconstruct DBT images. We showed that making the Ram-Lak layer trainable, the reconstructed image can be improved in terms of noise reduction. Finally, this study enables additional proposals of ANN with Deep Learning models for DBT reconstruction and denoising.

Descrição

Palavras-chave

Deep learning, Digital breast tomosynthesis, Noise reduction, Tomographic reconstruction

Idioma

Inglês

Como citar

Progress in Biomedical Optics and Imaging - Proceedings of SPIE, v. 11595.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação