Logotipo do repositório
 

Publicação:
Image reconstruction from projections of digital breast tomosynthesis using deep learning

dc.contributor.authorDe Paula, Davi D. [UNESP]
dc.contributor.authorSalvadeo, Denis H. P. [UNESP]
dc.contributor.authorDe Araújo, Darlan M. N. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2021-06-25T10:27:26Z
dc.date.available2021-06-25T10:27:26Z
dc.date.issued2021-01-01
dc.description.abstractThe Filtered Backprojection (FBP) algorithm for Computed Tomography (CT) reconstruction can be mapped entire in an Artificial Neural Network (ANN), with the backprojection (BP) operation simulated analytically in a layer and the Ram-Lak filter simulated as a convolutional layer. Thus, this work adapts the BP layer for Digital Breast Tomosynthesis (DBT) reconstruction, making possible the use of FBP simulated as an ANN to reconstruct DBT images. We showed that making the Ram-Lak layer trainable, the reconstructed image can be improved in terms of noise reduction. Finally, this study enables additional proposals of ANN with Deep Learning models for DBT reconstruction and denoising.en
dc.description.affiliationASao Paulo State University (Unesp) Institute of Geosciences and Exact Sciences
dc.description.affiliationUnespASao Paulo State University (Unesp) Institute of Geosciences and Exact Sciences
dc.identifierhttp://dx.doi.org/10.1117/12.2582183
dc.identifier.citationProgress in Biomedical Optics and Imaging - Proceedings of SPIE, v. 11595.
dc.identifier.doi10.1117/12.2582183
dc.identifier.issn1605-7422
dc.identifier.scopus2-s2.0-85103693576
dc.identifier.urihttp://hdl.handle.net/11449/206153
dc.language.isoeng
dc.relation.ispartofProgress in Biomedical Optics and Imaging - Proceedings of SPIE
dc.sourceScopus
dc.subjectDeep learning
dc.subjectDigital breast tomosynthesis
dc.subjectNoise reduction
dc.subjectTomographic reconstruction
dc.titleImage reconstruction from projections of digital breast tomosynthesis using deep learningen
dc.typeTrabalho apresentado em eventopt
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claropt

Arquivos