A social-spider optimization approach for support vector machines parameters tuning
Carregando...
Arquivos
Fonte externa
Fonte externa
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Trabalho apresentado em evento
Direito de acesso
Arquivos
Fonte externa
Fonte externa
Resumo
The choice of hyper-parameters in Support Vector Machines (SVM)-based learning is a crucial task, since different values may degrade its performance, as well as can increase the computational burden. In this paper, we introduce a recently developed nature-inspired optimization algorithm to find out suitable values for SVM kernel mapping named Social-Spider Optimization (SSO). We compare the results obtained by SSO against with a Grid-Search, Particle Swarm Optimization and Harmonic Search. Statistical evaluation has showed SSO can outperform the compared techniques for some sort of kernels and datasets.
Descrição
Palavras-chave
Evolutionary Computing, Social-Spider Optimization, Support Vector Machines
Idioma
Inglês
Citação
IEEE SSCI 2014 - 2014 IEEE Symposium Series on Computational Intelligence - SIS 2014: 2014 IEEE Symposium on Swarm Intelligence, Proceedings, p. 8-13.


