Logo do repositório

A social-spider optimization approach for support vector machines parameters tuning

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

The choice of hyper-parameters in Support Vector Machines (SVM)-based learning is a crucial task, since different values may degrade its performance, as well as can increase the computational burden. In this paper, we introduce a recently developed nature-inspired optimization algorithm to find out suitable values for SVM kernel mapping named Social-Spider Optimization (SSO). We compare the results obtained by SSO against with a Grid-Search, Particle Swarm Optimization and Harmonic Search. Statistical evaluation has showed SSO can outperform the compared techniques for some sort of kernels and datasets.

Descrição

Palavras-chave

Evolutionary Computing, Social-Spider Optimization, Support Vector Machines

Idioma

Inglês

Citação

IEEE SSCI 2014 - 2014 IEEE Symposium Series on Computational Intelligence - SIS 2014: 2014 IEEE Symposium on Swarm Intelligence, Proceedings, p. 8-13.

Itens relacionados

Unidades

Item type:Unidade,
Faculdade de Ciências
FC
Campus: Bauru


Departamentos

Cursos de graduação

Programas de pós-graduação