A social-spider optimization approach for support vector machines parameters tuning
| dc.contributor.author | Pereira, Danillo R. | |
| dc.contributor.author | Pazoti, Mario A. | |
| dc.contributor.author | Pereira, Luis A. M. [UNESP] | |
| dc.contributor.author | Papa, Joao Paulo [UNESP] | |
| dc.contributor.institution | Informatics Faculty of Presidente Prudente, University of Western Sao Paulo (UNOESTE) | |
| dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
| dc.date.accessioned | 2022-04-29T13:58:07Z | |
| dc.date.available | 2022-04-29T13:58:07Z | |
| dc.date.issued | 2015-01-01 | |
| dc.description.abstract | The choice of hyper-parameters in Support Vector Machines (SVM)-based learning is a crucial task, since different values may degrade its performance, as well as can increase the computational burden. In this paper, we introduce a recently developed nature-inspired optimization algorithm to find out suitable values for SVM kernel mapping named Social-Spider Optimization (SSO). We compare the results obtained by SSO against with a Grid-Search, Particle Swarm Optimization and Harmonic Search. Statistical evaluation has showed SSO can outperform the compared techniques for some sort of kernels and datasets. | en |
| dc.description.affiliation | Informatics Faculty of Presidente Prudente, University of Western Sao Paulo (UNOESTE) | |
| dc.description.affiliation | Department of Computing, São Paulo State University | |
| dc.description.affiliationUnesp | Department of Computing, São Paulo State University | |
| dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
| dc.description.sponsorshipId | FAPESP: #2009/16206-1 | |
| dc.description.sponsorshipId | FAPESP: #2011/14094-1 | |
| dc.description.sponsorshipId | FAPESP: #2013/20387-7 | |
| dc.format.extent | 8-13 | |
| dc.identifier | http://dx.doi.org/10.1109/SIS.2014.7011769 | |
| dc.identifier.citation | IEEE SSCI 2014 - 2014 IEEE Symposium Series on Computational Intelligence - SIS 2014: 2014 IEEE Symposium on Swarm Intelligence, Proceedings, p. 8-13. | |
| dc.identifier.doi | 10.1109/SIS.2014.7011769 | |
| dc.identifier.scopus | 2-s2.0-84923095540 | |
| dc.identifier.uri | http://hdl.handle.net/11449/232373 | |
| dc.language.iso | eng | |
| dc.relation.ispartof | IEEE SSCI 2014 - 2014 IEEE Symposium Series on Computational Intelligence - SIS 2014: 2014 IEEE Symposium on Swarm Intelligence, Proceedings | |
| dc.source | Scopus | |
| dc.subject | Evolutionary Computing | |
| dc.subject | Social-Spider Optimization | |
| dc.subject | Support Vector Machines | |
| dc.title | A social-spider optimization approach for support vector machines parameters tuning | en |
| dc.type | Trabalho apresentado em evento | pt |
| dspace.entity.type | Publication | |
| relation.isDepartmentOfPublication | 872c0bbb-bf84-404e-9ca7-f87a0fe94e58 | |
| relation.isDepartmentOfPublication.latestForDiscovery | 872c0bbb-bf84-404e-9ca7-f87a0fe94e58 | |
| relation.isOrgUnitOfPublication | aef1f5df-a00f-45f4-b366-6926b097829b | |
| relation.isOrgUnitOfPublication.latestForDiscovery | aef1f5df-a00f-45f4-b366-6926b097829b | |
| unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências, Bauru | pt |
| unesp.department | Computação - FC | pt |
