Logo do repositório

A social-spider optimization approach for support vector machines parameters tuning

dc.contributor.authorPereira, Danillo R.
dc.contributor.authorPazoti, Mario A.
dc.contributor.authorPereira, Luis A. M. [UNESP]
dc.contributor.authorPapa, Joao Paulo [UNESP]
dc.contributor.institutionInformatics Faculty of Presidente Prudente, University of Western Sao Paulo (UNOESTE)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-29T13:58:07Z
dc.date.available2022-04-29T13:58:07Z
dc.date.issued2015-01-01
dc.description.abstractThe choice of hyper-parameters in Support Vector Machines (SVM)-based learning is a crucial task, since different values may degrade its performance, as well as can increase the computational burden. In this paper, we introduce a recently developed nature-inspired optimization algorithm to find out suitable values for SVM kernel mapping named Social-Spider Optimization (SSO). We compare the results obtained by SSO against with a Grid-Search, Particle Swarm Optimization and Harmonic Search. Statistical evaluation has showed SSO can outperform the compared techniques for some sort of kernels and datasets.en
dc.description.affiliationInformatics Faculty of Presidente Prudente, University of Western Sao Paulo (UNOESTE)
dc.description.affiliationDepartment of Computing, São Paulo State University
dc.description.affiliationUnespDepartment of Computing, São Paulo State University
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: #2009/16206-1
dc.description.sponsorshipIdFAPESP: #2011/14094-1
dc.description.sponsorshipIdFAPESP: #2013/20387-7
dc.format.extent8-13
dc.identifierhttp://dx.doi.org/10.1109/SIS.2014.7011769
dc.identifier.citationIEEE SSCI 2014 - 2014 IEEE Symposium Series on Computational Intelligence - SIS 2014: 2014 IEEE Symposium on Swarm Intelligence, Proceedings, p. 8-13.
dc.identifier.doi10.1109/SIS.2014.7011769
dc.identifier.scopus2-s2.0-84923095540
dc.identifier.urihttp://hdl.handle.net/11449/232373
dc.language.isoeng
dc.relation.ispartofIEEE SSCI 2014 - 2014 IEEE Symposium Series on Computational Intelligence - SIS 2014: 2014 IEEE Symposium on Swarm Intelligence, Proceedings
dc.sourceScopus
dc.subjectEvolutionary Computing
dc.subjectSocial-Spider Optimization
dc.subjectSupport Vector Machines
dc.titleA social-spider optimization approach for support vector machines parameters tuningen
dc.typeTrabalho apresentado em eventopt
dspace.entity.typePublication
relation.isDepartmentOfPublication872c0bbb-bf84-404e-9ca7-f87a0fe94e58
relation.isDepartmentOfPublication.latestForDiscovery872c0bbb-bf84-404e-9ca7-f87a0fe94e58
relation.isOrgUnitOfPublicationaef1f5df-a00f-45f4-b366-6926b097829b
relation.isOrgUnitOfPublication.latestForDiscoveryaef1f5df-a00f-45f4-b366-6926b097829b
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos