Logotipo do repositório
 

Publicação:
Application of ARX neural networks to model the Rate of Penetration of petroleum wells drilling

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Acta Press Anaheim

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

Bit performance prediction has been a challenging problem for the petroleum industry. It is essential in cost reduction associated with well planning and drilling performance prediction, especially when rigs leasing rates tend to follow the projects-demand and barrel-price rises. A methodology to model and predict one of the drilling bit performance evaluator, the Rate of Penetration (ROP), is presented herein. As the parameters affecting the ROP are complex and their relationship not easily modeled, the application of a Neural Network is suggested. In the present work, a dynamic neural network, based on the Auto-Regressive with Extra Input Signals model, or ARX model, is used to approach the ROP modeling problem. The network was applied to a real oil offshore field data set, consisted of information from seven wells drilled with an equal-diameter bit.

Descrição

Palavras-chave

Neural Networks, ARX model, petroleum wells drilling, Rate of Penetration, and drilling performance

Idioma

Inglês

Como citar

Proceedings Of The Second Iasted International Conference On Computational Intelligence. Anaheim: Acta Press Anaheim, p. 152-+, 2006.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação