Logo do repositório
 

Application of ARX neural networks to model the Rate of Penetration of petroleum wells drilling

dc.contributor.authorFonseca, Tiago C.
dc.contributor.authorMendes, Jose Ricardo P.
dc.contributor.authorSerapiao, Adriane B. S. [UNESP]
dc.contributor.authorGuilherme, Ivan R. [UNESP]
dc.contributor.authorKovalerchuk, B.
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2020-12-10T18:05:49Z
dc.date.available2020-12-10T18:05:49Z
dc.date.issued2006-01-01
dc.description.abstractBit performance prediction has been a challenging problem for the petroleum industry. It is essential in cost reduction associated with well planning and drilling performance prediction, especially when rigs leasing rates tend to follow the projects-demand and barrel-price rises. A methodology to model and predict one of the drilling bit performance evaluator, the Rate of Penetration (ROP), is presented herein. As the parameters affecting the ROP are complex and their relationship not easily modeled, the application of a Neural Network is suggested. In the present work, a dynamic neural network, based on the Auto-Regressive with Extra Input Signals model, or ARX model, is used to approach the ROP modeling problem. The network was applied to a real oil offshore field data set, consisted of information from seven wells drilled with an equal-diameter bit.en
dc.description.affiliationUniv Estadual Campinas, FEM, DEP, CP 6052, Campinas, SP, Brazil
dc.description.affiliationUNESP, IGCE, DEMAC, Rio Claro, SP, Brazil
dc.description.affiliationUnespUNESP, IGCE, DEMAC, Rio Claro, SP, Brazil
dc.format.extent152-+
dc.identifier.citationProceedings Of The Second Iasted International Conference On Computational Intelligence. Anaheim: Acta Press Anaheim, p. 152-+, 2006.
dc.identifier.urihttp://hdl.handle.net/11449/195863
dc.identifier.wosWOS:000243777100027
dc.language.isoeng
dc.publisherActa Press Anaheim
dc.relation.ispartofProceedings Of The Second Iasted International Conference On Computational Intelligence
dc.sourceWeb of Science
dc.subjectNeural Networks
dc.subjectARX model
dc.subjectpetroleum wells drilling
dc.subjectRate of Penetration
dc.subjectand drilling performance
dc.titleApplication of ARX neural networks to model the Rate of Penetration of petroleum wells drillingen
dc.typeTrabalho apresentado em evento
dcterms.rightsHolderActa Press Anaheim
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claropt
unesp.departmentEstatística, Matemática Aplicada e Computação - IGCEpt

Arquivos