Logotipo do repositório
 

Publicação:
Exudate detection in fundus images using deeply-learnable features

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Presence of exudates on a retina is an early sign of diabetic retinopathy, and automatic detection of these can improve the diagnosis of the disease. Convolutional Neural Networks (CNNs) have been used for automatic exudate detection, but with poor performance. This study has investigated different deep learning techniques to maximize the sensitivity and specificity. We have compared multiple deep learning methods, and both supervised and unsupervised classifiers for improving the performance of automatic exudate detection, i.e., CNNs, pre-trained Residual Networks (ResNet-50) and Discriminative Restricted Boltzmann Machines. The experiments were conducted on two publicly available databases: (i) DIARETDB1 and (ii) e-Ophtha. The results show that ResNet-50 with Support Vector Machines outperformed other networks with an accuracy and sensitivity of 98% and 0.99, respectively. This shows that ResNet-50 can be used for the analysis of the fundus images to detect exudates.

Descrição

Palavras-chave

Convolutional neural networks, Deep learning, Deep residual networks, Diabetic retinopathy, Discriminative restricted Boltzmann machines, Exudate detection

Idioma

Inglês

Como citar

Computers in Biology and Medicine, v. 104, p. 62-69.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação