Logotipo do repositório
 

Publicação:
Exudate detection in fundus images using deeply-learnable features

dc.contributor.authorKhojasteh, Parham
dc.contributor.authorPassos Júnior, Leandro Aparecido
dc.contributor.authorCarvalho, Tiago
dc.contributor.authorRezende, Edmar
dc.contributor.authorAliahmad, Behzad
dc.contributor.authorPapa, João Paulo [UNESP]
dc.contributor.authorKumar, Dinesh Kant
dc.contributor.institutionSchool of Engineering
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionFederal Institute of São Paulo
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2019-10-06T16:54:37Z
dc.date.available2019-10-06T16:54:37Z
dc.date.issued2019-01-01
dc.description.abstractPresence of exudates on a retina is an early sign of diabetic retinopathy, and automatic detection of these can improve the diagnosis of the disease. Convolutional Neural Networks (CNNs) have been used for automatic exudate detection, but with poor performance. This study has investigated different deep learning techniques to maximize the sensitivity and specificity. We have compared multiple deep learning methods, and both supervised and unsupervised classifiers for improving the performance of automatic exudate detection, i.e., CNNs, pre-trained Residual Networks (ResNet-50) and Discriminative Restricted Boltzmann Machines. The experiments were conducted on two publicly available databases: (i) DIARETDB1 and (ii) e-Ophtha. The results show that ResNet-50 with Support Vector Machines outperformed other networks with an accuracy and sensitivity of 98% and 0.99, respectively. This shows that ResNet-50 can be used for the analysis of the fundus images to detect exudates.en
dc.description.affiliationRoyal Melbourne Institute of Technology Biosignals Laboratory School of Engineering, 124 La Trobe St
dc.description.affiliationFederal University of São Carlos Department of Computing, Rod. Washington Luís, Km 235
dc.description.affiliationFederal Institute of São Paulo Department of Computing
dc.description.affiliationUniversity of Campinas Institute of Computing
dc.description.affiliationSão Paulo State University - UNESP Department of Computing, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01
dc.description.affiliationUnespSão Paulo State University - UNESP Department of Computing, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: #2013/07375-0
dc.description.sponsorshipIdFAPESP: #2014/12236-1
dc.description.sponsorshipIdFAPESP: #2016/19403-6
dc.description.sponsorshipIdFAPESP: #2016/50022-9
dc.description.sponsorshipIdCNPq: #307066/2017-7
dc.format.extent62-69
dc.identifierhttp://dx.doi.org/10.1016/j.compbiomed.2018.10.031
dc.identifier.citationComputers in Biology and Medicine, v. 104, p. 62-69.
dc.identifier.doi10.1016/j.compbiomed.2018.10.031
dc.identifier.issn1879-0534
dc.identifier.issn0010-4825
dc.identifier.scopus2-s2.0-85056215478
dc.identifier.urihttp://hdl.handle.net/11449/189863
dc.language.isoeng
dc.relation.ispartofComputers in Biology and Medicine
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectConvolutional neural networks
dc.subjectDeep learning
dc.subjectDeep residual networks
dc.subjectDiabetic retinopathy
dc.subjectDiscriminative restricted Boltzmann machines
dc.subjectExudate detection
dc.titleExudate detection in fundus images using deeply-learnable featuresen
dc.typeArtigo
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos