Leveraging SAR and Optical Remote Sensing for Enhanced Biomass Estimation in the Amazon with Random Forest and XGBoost Models
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Trabalho apresentado em evento
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
This study addresses the challenge of estimating above-ground biomass (AGB) in the Amazon rainforest by developing a reference geographical database, which provides the ground truth, and comparing the relative importance of using Synthetic Aperture Radar (SAR) and optical remote sensing data to automatically infer AGB. In the experiments reported in this article, we assessed how those two remote sensing data sources impact the accuracy of AGB estimates produced by regression models built with Random Forest (RF) and Extreme Gradient Boosting (XGBoost). The research involved compiling a comprehensive database from many available forest inventories, integrating parcel- and tree-level data to enable precise biomass estimation. The methodology included setting up a spatial data analysis environment, standardizing data, and implementing an experimental protocol with feature selection and leave-one-out cross-validation. The results demonstrate that both kinds of data, i.e., SAR and optical, and their combination can be used for estimating AGB, providing valuable insights for forest management and climate change mitigation efforts. The reference database is available upon request to the corresponding authors.
Descrição
Palavras-chave
Aboveground Biomass, Forest Inventory, Geodatabase, Machine Learning, Remote Sensing
Idioma
Inglês
Citação
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. 10, n. 3, p. 21-27, 2024.




