Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Leveraging SAR and Optical Remote Sensing for Enhanced Biomass Estimation in the Amazon with Random Forest and XGBoost Models

dc.contributor.authorAntunes, Rodrigo
dc.contributor.authorJunior, Luiz
dc.contributor.authorCosta, Gilson
dc.contributor.authorFeitosa, Raul
dc.contributor.authorde Souza Bias, Edilson
dc.contributor.authorCereda Junior, Abimael
dc.contributor.authorAlmeida, Catherine [UNESP]
dc.contributor.authorCué La Rosa, Laura E.
dc.contributor.authorHapp, Patrick
dc.contributor.authorChiamulera, Leonardo
dc.contributor.institutionConecthus Research Institute
dc.contributor.institutionUniversidade do Estado do Rio de Janeiro (UERJ)
dc.contributor.institutionPontifical Catholic University of Rio de Janeiro (PUC-Rio)
dc.contributor.institutionUniversity of Brasilia (UnB)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionWageningen University & Research (WUR)
dc.contributor.institutionGeografia das Coisas
dc.date.accessioned2025-04-29T20:01:35Z
dc.date.issued2024-11-04
dc.description.abstractThis study addresses the challenge of estimating above-ground biomass (AGB) in the Amazon rainforest by developing a reference geographical database, which provides the ground truth, and comparing the relative importance of using Synthetic Aperture Radar (SAR) and optical remote sensing data to automatically infer AGB. In the experiments reported in this article, we assessed how those two remote sensing data sources impact the accuracy of AGB estimates produced by regression models built with Random Forest (RF) and Extreme Gradient Boosting (XGBoost). The research involved compiling a comprehensive database from many available forest inventories, integrating parcel- and tree-level data to enable precise biomass estimation. The methodology included setting up a spatial data analysis environment, standardizing data, and implementing an experimental protocol with feature selection and leave-one-out cross-validation. The results demonstrate that both kinds of data, i.e., SAR and optical, and their combination can be used for estimating AGB, providing valuable insights for forest management and climate change mitigation efforts. The reference database is available upon request to the corresponding authors.en
dc.description.affiliationConecthus Research Institute
dc.description.affiliationRio de Janeiro State University (UERJ)
dc.description.affiliationPontifical Catholic University of Rio de Janeiro (PUC-Rio)
dc.description.affiliationUniversity of Brasilia (UnB)
dc.description.affiliationSão Paulo State University (UNESP)
dc.description.affiliationWageningen University & Research (WUR)
dc.description.affiliationGeografia das Coisas
dc.description.affiliationUnespSão Paulo State University (UNESP)
dc.description.sponsorshipLupus Research Institute
dc.format.extent21-27
dc.identifierhttp://dx.doi.org/10.5194/isprs-annals-X-3-2024-21-2024
dc.identifier.citationISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. 10, n. 3, p. 21-27, 2024.
dc.identifier.doi10.5194/isprs-annals-X-3-2024-21-2024
dc.identifier.issn2194-9050
dc.identifier.issn2194-9042
dc.identifier.scopus2-s2.0-85212390078
dc.identifier.urihttps://hdl.handle.net/11449/304988
dc.language.isoeng
dc.relation.ispartofISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
dc.sourceScopus
dc.subjectAboveground Biomass
dc.subjectForest Inventory
dc.subjectGeodatabase
dc.subjectMachine Learning
dc.subjectRemote Sensing
dc.titleLeveraging SAR and Optical Remote Sensing for Enhanced Biomass Estimation in the Amazon with Random Forest and XGBoost Modelsen
dc.typeTrabalho apresentado em eventopt
dspace.entity.typePublication

Arquivos

Coleções