Publicação: Uma adaptação da teoria de homologia para problemas de reconhecimento topológico de padrões
Carregando...
Data
2018-03-09
Orientador
Libardi, Alice Kimie Miwa 

Coorientador
Pós-graduação
Matemática - IBILCE
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Estadual Paulista (Unesp)
Tipo
Dissertação de mestrado
Direito de acesso
Acesso aberto

Resumo
Resumo (português)
O objetivo dessa dissertação é apresentar parte do artigo [2] de Gunnar Carlsson, onde se discute a adaptação de métodos da teoria usual de homologia para problemas de reconhecimento topológico de padrões em conjuntos de dados. Esta adaptação conduz aos conceitos de homologia de persistência e de barcodes. Atualmente, várias aplicações são obtidas com o uso deste método. Apresentaremos alguns casos onde a homologia de persistência é usada, ilustrando diferentes modos em que podem ser aplicados. Descreveremos, também baseado no artigo de Carlsson, um novo método para estudar a persistência de características topológicas através de uma família de conjuntos de dados, chamado persistência zig-zag . Este método generaliza a teoria de homologia de persistência e chama atenção de situações que não são cobertas pela outra teoria. Além disso, são apresentadas algumas aplicações dessa ferramenta para a obtenção de informações de alguns conjuntos de dados
Resumo (inglês)
The main goal of this work is to present a part of the Gunnar Carlsson paper [2], where the adaptation of the theory of usual homology to topological pattern recognition problems in point cloud data sets is discussed. This adaptation leads to the concepts of persistence homology and barcodes. Several applications have been obtained using this method. We will present some cases where persistence homology is used, illustrating different ways in which the method can be applied. We will describe,alsobasedintheCarlsson’spaper,anewmethodtostudythepersistence oftopologicalfeaturesthroughpointclouddatasets,calledzig-zagpersistence. This method generalizes the homology persistent theory and we will pay attention to situations that are not covered by the other theory. In addition, some applications of this tool are presented to obtain information from some data sets.
Descrição
Idioma
Português