Repository logo
 

Publication:
EEG-based Person Authentication Using Multi-objective Flower Pollination Algorithm

Loading...
Thumbnail Image

Advisor

Coadvisor

Graduate program

Undergraduate course

Journal Title

Journal ISSN

Volume Title

Publisher

Ieee

Type

Work presented at event

Access right

Acesso abertoAcesso Aberto

Abstract

Since the past decades, the world has been transformed into a digital society, where every individual is living with a unique identifier. The primary purpose of this id is to distinguish from others and to deal with digital machines which are surrounding the world. Recently, many researchers showed that the brain electrical activity or electroencephalogram (EEG) signals could provide robust and unique features that can be considered as a new biometric authentication technique, given that accurately methods to decompose the signals must also be considered. This paper proposes a novel method for EEG signal denoising based on the multi-objective Flower Pollination Algorithm and the Wavelet Transform (MOFPA-WT) to extract useful features from denoised signals. MOFPA-WT is tested using a standard EEG signal dataset, namely, EEG motor movement/imagery dataset, and its performance is evaluated using three criteria: (i) accuracy, (ii) true acceptance rate, and (iii) false acceptance rate. We show that the proposed method can achieve results that are comparable to the state-of-the-art ones, as well as we draw future directions towards the research area.

Description

Keywords

EEG, Biometric, Authentication, Flower pollination algorithm, multi-objective

Language

English

Citation

2018 Ieee Congress On Evolutionary Computation (cec). New York: Ieee, p. 1530-1537, 2018.

Related itens

Units

Departments

Undergraduate courses

Graduate programs