Logotipo do repositório
 

Publicação:
EEG-based Person Authentication Using Multi-objective Flower Pollination Algorithm

dc.contributor.authorAlyasseri, Zaid Abdi Alkareem
dc.contributor.authorKhader, Ahamad Tajudin
dc.contributor.authorAl-Betar, Mohammed Azmi
dc.contributor.authorPapa, Joao P. [UNESP]
dc.contributor.authorAlomari, Osama Ahmad
dc.contributor.authorIEEE
dc.contributor.institutionUniv Sains Malaysia
dc.contributor.institutionUniv Kufa
dc.contributor.institutionAl Balqa Appl Univ
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2019-10-04T12:32:41Z
dc.date.available2019-10-04T12:32:41Z
dc.date.issued2018-01-01
dc.description.abstractSince the past decades, the world has been transformed into a digital society, where every individual is living with a unique identifier. The primary purpose of this id is to distinguish from others and to deal with digital machines which are surrounding the world. Recently, many researchers showed that the brain electrical activity or electroencephalogram (EEG) signals could provide robust and unique features that can be considered as a new biometric authentication technique, given that accurately methods to decompose the signals must also be considered. This paper proposes a novel method for EEG signal denoising based on the multi-objective Flower Pollination Algorithm and the Wavelet Transform (MOFPA-WT) to extract useful features from denoised signals. MOFPA-WT is tested using a standard EEG signal dataset, namely, EEG motor movement/imagery dataset, and its performance is evaluated using three criteria: (i) accuracy, (ii) true acceptance rate, and (iii) false acceptance rate. We show that the proposed method can achieve results that are comparable to the state-of-the-art ones, as well as we draw future directions towards the research area.en
dc.description.affiliationUniv Sains Malaysia, Sch Comp Sci, George Town, Malaysia
dc.description.affiliationUniv Kufa, ECE Dept, Fac Engn, Najaf, Iraq
dc.description.affiliationAl Balqa Appl Univ, Al Huson Univ Coll, Dept Informat Technol, Irbid, Jordan
dc.description.affiliationSao Paulo State Univ, Dept Comp, Bauru, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp, Bauru, Brazil
dc.description.sponsorshipUniversity Science Malaysia (USM)
dc.description.sponsorshipWorld Academic Science (TWAS)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação para o Desenvolvimento da UNESP (FUNDUNESP)
dc.description.sponsorshipIdWorld Academic Science (TWAS): 3240287134
dc.description.sponsorshipIdFAPESP: 2013/07375-0
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdFAPESP: 2016/19403-6
dc.description.sponsorshipIdCNPq: 306166/2014-3
dc.description.sponsorshipIdCNPq: 307066/2017-7
dc.description.sponsorshipIdFUNDUNESP: 2597.2017
dc.format.extent1530-1537
dc.identifierhttp://dx.doi.org/10.1109/CEC.2018.8477895
dc.identifier.citation2018 Ieee Congress On Evolutionary Computation (cec). New York: Ieee, p. 1530-1537, 2018.
dc.identifier.doi10.1109/CEC.2018.8477895
dc.identifier.urihttp://hdl.handle.net/11449/185100
dc.identifier.wosWOS:000451175500196
dc.language.isoeng
dc.publisherIeee
dc.relation.ispartof2018 Ieee Congress On Evolutionary Computation (cec)
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectEEG
dc.subjectBiometric
dc.subjectAuthentication
dc.subjectFlower pollination algorithm
dc.subjectmulti-objective
dc.titleEEG-based Person Authentication Using Multi-objective Flower Pollination Algorithmen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee
dspace.entity.typePublication
unesp.author.orcid0000-0003-1980-1791[3]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos