Logo do repositório

Alguns aspectos da teoria de singularidades com aplicações na topologia e geometria

Carregando...
Imagem de Miniatura

Orientador

Costa, João Carlos Ferreira

Coorientador

Pós-graduação

Matemática - IBILCE

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Estadual Paulista (Unesp)

Tipo

Dissertação de mestrado

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Resumo (português)

O objetivo da dissertação e estudar a equivalência de contato, ou K-equivalência, introduzida por John Mather como ferramenta da teoria de Singularidades para classificar seus objetos. Mostraremos como a equivalência de contato esta relacionada com a Geometria e a Topologia. Com a Geometria, através do estudo do contato entre pares de certas subvariedades em Rn. Com a Topologia, através da versão topológica da K-equivalência, a chamada C0-K-equivalência, observando que o grau e um invariante completo no caso de germes de aplicações f : (Rn;0) ! (Rn;0).

Resumo (inglês)

The goal of this work is to study the notion of contact equivalence, or K-equivalence, introduced by John Mather in the Singularity theory. We will show how the contact equivalence is related to Geometry and Topology. With the Geometry through the study of the contact between pairs of certain submanifolds in Rn. With the Topology through the topological version of K-equivalence, the called C0-K-equivalence, observing that the degree is a complete invariant in the case of map germs f : (Rn;0) ! (Rn;0).

Descrição

Palavras-chave

K-equivalência, Equivalência de contato, K-equivalence, Equivalence of contact

Idioma

Português

Citação

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação