Logo do repositório

Blur parameter identification through optimum-path forest

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Image acquisition processes usually add some level of noise and degradation, thus causing common problems in image restoration. The restoration process depends on the knowledge about the degradation parameters, which is critical for the image deblurring step. In order to deal with this issue, several approaches have been used in the literature, as well as techniques based on machine learning. In this paper, we presented an approach to identify blur parameters in images using the Optimum-Path Forest (OPF) classifier. Experiments demonstrated the efficiency and effectiveness of OPF when compared against some state-of-the-art pattern recognition techniques for blur parameter identification purpose, such as Support Vector Machines, Bayesian classifier and the k-nearest neighbors.

Descrição

Palavras-chave

Image restoration, Machine learning, Optimum-path forest

Idioma

Inglês

Citação

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 10425 LNCS, p. 230-240.

Itens relacionados

Unidades

Item type:Unidade,
Faculdade de Ciências
FC
Campus: Bauru


Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso