Logo do repositório

Blur parameter identification through optimum-path forest

dc.contributor.authorPires, Rafael G.
dc.contributor.authorFernandes, Silas E. N.
dc.contributor.authorPapa, João Paulo [UNESP]
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-12-11T17:33:53Z
dc.date.available2018-12-11T17:33:53Z
dc.date.issued2017-01-01
dc.description.abstractImage acquisition processes usually add some level of noise and degradation, thus causing common problems in image restoration. The restoration process depends on the knowledge about the degradation parameters, which is critical for the image deblurring step. In order to deal with this issue, several approaches have been used in the literature, as well as techniques based on machine learning. In this paper, we presented an approach to identify blur parameters in images using the Optimum-Path Forest (OPF) classifier. Experiments demonstrated the efficiency and effectiveness of OPF when compared against some state-of-the-art pattern recognition techniques for blur parameter identification purpose, such as Support Vector Machines, Bayesian classifier and the k-nearest neighbors.en
dc.description.affiliationDepartment of Computing Federal University of São Carlos (UFSCar), Rodovia Washington Luís, Km 235 - SP 310
dc.description.affiliationDepartment of Computing São Paulo State University (Unesp), Av. Eng. Luiz Edmundo Carrijo Coube, 14-01
dc.description.affiliationUnespDepartment of Computing São Paulo State University (Unesp), Av. Eng. Luiz Edmundo Carrijo Coube, 14-01
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: #2014/12236-1
dc.description.sponsorshipIdFAPESP: #2014/16250-9
dc.description.sponsorshipIdCNPq: #306166/2014-3
dc.format.extent230-240
dc.identifierhttp://dx.doi.org/10.1007/978-3-319-64698-5_20
dc.identifier.citationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 10425 LNCS, p. 230-240.
dc.identifier.doi10.1007/978-3-319-64698-5_20
dc.identifier.issn1611-3349
dc.identifier.issn0302-9743
dc.identifier.scopus2-s2.0-85028453202
dc.identifier.urihttp://hdl.handle.net/11449/179131
dc.language.isoeng
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.relation.ispartofsjr0,295
dc.rights.accessRightsAcesso abertopt
dc.sourceScopus
dc.subjectImage restoration
dc.subjectMachine learning
dc.subjectOptimum-path forest
dc.titleBlur parameter identification through optimum-path foresten
dc.typeTrabalho apresentado em eventopt
dspace.entity.typePublication
relation.isDepartmentOfPublication872c0bbb-bf84-404e-9ca7-f87a0fe94e58
relation.isDepartmentOfPublication.latestForDiscovery872c0bbb-bf84-404e-9ca7-f87a0fe94e58
relation.isOrgUnitOfPublicationaef1f5df-a00f-45f4-b366-6926b097829b
relation.isOrgUnitOfPublication.latestForDiscoveryaef1f5df-a00f-45f4-b366-6926b097829b
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos